Browse > Article
http://dx.doi.org/10.4283/JKMS.2016.26.2.039

First-principles Study on the Magnetic Properties of Gd doped Bithmuth-Telluride  

Van Quang, Tran (Dept. of Physics, University of Transport and Communications)
Kim, Miyoung (Dept. of Nano Physics, Sookmyung Women's University)
Abstract
Determination of the structural, electronic, and magnetic properties of the magnetically doped bismuth-telluride alloys are drawing lots of interest in the fields of the thermoelectric application as well as the research on magnetic interaction and topological insulator. In this study, we performed the first-principles electronic structure calculations within the density functional theory for the Gd doped bismuth-tellurides in order to study its magnetic properties and magnetic phase stability. All-electron FLAPW (full-potential linearized augmented plane-wave) method is employed and the exchange correlation potentials of electrons are treated within the generalized gradient approximation. In order to describe the localized f-electrons of Gd properly, the Hubbard +U term and the spin-orbit coupling of the valence electrons are included in the second variational way. The results show that while the Gd bulk prefers a ferromagnetic phase, the total energy differences between the ferromagnetic and the antiferromagnetic phases of the Gd doped bismuth-telluride alloys are about ~1meV/Gd, indicating that the stable magnetic phase may be changed sensitively depending on the structural change such as defects or strains.
Keywords
ferromagnetic; magnetic phase stability; thermoelectric; electronic structures calculation; spin-orbit coupling effect; magnetic doping;
Citations & Related Records
연도 인용수 순위
  • Reference
1 H. Ohno, H. Munekata, T. Penney, S. von Molnar, and L. L. Chang, Phys. Rev. Lett. 68, 2664 (1992).   DOI
2 Y. D. Park, A. T. Hanbicki, S. C. Erwin, C. S. Hellberg, J. M. Sullivan, J. E. Mattson, T. F. Ambrose, A. Wilson, G. Wilson, G. Spanos, and B. T. Jonker, Science 295, 651 (2002).   DOI
3 G. J. Snyder and E. S. Toberer, Nature Mater. 7, 105 (2008).   DOI
4 D. Y. Chung, T. Hogan, P. Brazis, M. Rocci-Lane, C. Kannewurf, M. Bastea, C. Uher, and M. G. Kanatzidis, Science 287, 1024 (2000).   DOI
5 R. Venkatasubramanian, E. Siivola, T. Colpitts, and B. O'Quinn, Nature 413, 597 (2001).   DOI
6 J. Moore, Nat. Phys. 5, 378 (2009).   DOI
7 R. Yu, W. Zhang, H. Zhang, S. Zhang, X. Dai, and Z. Fang, Science 329, 61 (2010).   DOI
8 Q. Liu, C. Liu, C. Xu, X. Qi, and S. Zhang, Phys. Rev. Lett. 102, 156603 (2009).   DOI
9 Y. L. Chen, J.-H. Chu, J. G. Analytis, Z. K. Liu, K. Igarashi, H.-H. Kuo, X. L. Qi, S. K. Mo, R. G. Moore, D. H. Lu, M. Hashimoto, T. Sasagawa, S. C. Zhang, I. R. Fisher, Z. Hussain, and Z. X. Shen, Science 329, 659 (2010).   DOI
10 J. Zhang, C. Z. Chang, P. Tang, Z. Zhang, X. Feng, K. Li, L. L. Wang, X. Chen, C. X. Liu, W. Duan, K. He, Q. K. Xue, X. C. Ma, and Y. Wang, Science 339, 1582 (2013).   DOI
11 Y. S. Hor, P. Roushan, J. Beidenkopf, J. Seo, D. Qu, J. G. Checkelsky, L. A. Wray, D. Hsieh, Y. Xia, S.-Y. Xu, D. Qian, M. Z. Hasan, N. P. Ong, A. Yazdani, and R. J. Cava, Phys. Rev. B 81, 195203 (2010).   DOI
12 H. J. Zhang, X. Zhang, and S. C. Zhang, arXiv:1108.4857v1 (2011).
13 Y. R. Song, F. Yang, M. Y. Yao, F. Zhu, L. Miao, J. P. Zu, M. X. Wang, H. Li, X. Yai, F. Ji, S. Qiao, Z. Sun, and G. B. Zhang, Appl. Phys. Lett. 100, 242403 (2012).   DOI
14 S. Li, S. E. Harrison, Y. Huo, A. Phshp, H. T. Yuan, B. Zhou, A. J. Kellock, S. S. P. Parkin, Y.-L. Chen, T. Hesjedal, and J. S. Harris, Appl. Phys. Lett. 102, 242412 (2013).   DOI
15 J. Kim, K. Lee, T. Takabatake, H. Kim, M. Kim, and M. Jung, Sci. Rep. 5, 10309 (2015).   DOI
16 T. V. Quang and M. Kim, J. Appl. Phys. 113, 17A934 (2013).   DOI
17 E. Wimmer, K. Krakauer, M. Wienert, and A. J. Freeman, Phys. Rev B 24, 864 (1981).
18 J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).   DOI
19 A. B. Schick, A. I. Liechtenstein, and W. E. Pickett, Phys. Rev. B 60, 10763 (1999).   DOI
20 S. Abdeloushed, N. Baadji, and M. Alouani, Phys. Rev. B 75, 094428 (2007).   DOI
21 D. D. Koelling and B. N. Harmon, J. Phys. C 10, 3107 (1977).   DOI
22 M. Kim, A. J. Freeman, and C. B. Geller, Phys. Rev. B 72, 035205 (2005).   DOI
23 A. Adam, Materials Research Bulletin 42, 1986 (2007).   DOI
24 C. G. Duan, R. F. Sabiryanov, J. Liu, W. N. Mei, P. A. Dowben, and J. R. Hardy, Phys. Rev. Lett. 94, 237201 (2005).   DOI
25 K. Maiti, M. C. Malagoli, E. Magnano, A. Dallmeyer, and C. Carbone, Phys. Rev. Lett. 86, 2846 (2001).   DOI
26 M. Kim and A. J. Freeman, Appl. Phys. Lett. 85, 4983 (2004).   DOI