• 제목/요약/키워드: BiFeO3 thin film

검색결과 34건 처리시간 0.025초

Eu와 V 동시 도핑에 의한 BiFeO3 박막의 구조와 전기적 특성 (Structural and Electrical Properties of BiFeO3 Thin Films by Eu and V Co-Doping)

  • 장성근;김윤장
    • 한국전기전자재료학회논문지
    • /
    • 제32권3호
    • /
    • pp.229-233
    • /
    • 2019
  • Pure $BiFeO_3$ (BFO) and (Eu, V) co-doped $Bi_{0.9}Eu_{0.1}Fe_{0.975}V_{0.025}O_{3+{\delta}}$ (BEFVO) thin films were deposited on $Pt(111)/Ti/SiO_2/Si(100)$ substrates by chemical solution deposition. The effects of co-doping were observed by X-ray diffraction, Raman spectroscopy, and scanning electron microscopy (SEM). The electrical properties of the BEFVO thin film were improved as compared to those of the pure BFO thin film. The remnant polarization ($2P_r$) of the BEFVO thin film was approximately $26{\mu}C/cm^2$ at a maximum electric field of 1,190 kV/cm with a frequency of 1 kHz. The leakage current density of the co-doped BEFVO thin film ($4.81{\times}10^{-5}A/cm^2$ at 100 kV/cm) was two orders of magnitude lower than of that of the pure BFO thin film.

화학용액 증착법으로 제조한 Bi0.9A0.1Fe0.975V0.025O3+α(A=Nd, Tb) 박막의 구조와 전기적 특성 (Microstructural and Electrical Properties of Bi0.9A0.1Fe0.975V0.025O3+α(A=Nd, Tb) Thin Films by Chemical Solution Deposition Method)

  • 장성근;김윤장
    • 한국전기전자재료학회논문지
    • /
    • 제30권10호
    • /
    • pp.646-650
    • /
    • 2017
  • We have evaluated the ferroelectric and electrical properties of pure $BiFeO_3$ (BFO) and $Bi_{0.9}A_{0.1}Fe_{0.975}V_{0.025}O_{3+{\alpha}}$ (A=Nd, Tb) thin films on $Pt(111)/Ti/SiO_2/Si(100)$ substrates by using a chemical solution deposition method. The remnant polarization ($2P_r$) of the $Bi_{0.9}Tb_{0.1}Fe_{0.975}V_{0.025}O_{3+{\alpha}}$ (BTFVO) thin film was approximately $65{\mu}C/cm^2$, with a maximum applied electric field of 950 kV/cm and a frequency of 10 kHz, where as that of the $Bi_{0.9}Nd_{0.1}Fe_{0.975}V_{0.025}O_{3+{\alpha}}$ (BNFVO) thin film was approximately $37{\mu}C/cm^2$ with a maximum applied electric field of 910 kV/cm. The leakage current density of the co-doped BNFVO thin film was four orders of magnitude lower than that of the pure BFO thin film, at $2.75{\times}10^{-7}A/cm^2$ with an applied electric field of 100 kV/cm. The grain size and uniformity of the co-doped BNFVO and BTFVO thin films were improved, in comparison to the pure BFO thin film, through structural modificationsdue to the co-doping with Nd and Tb.

이종에피에 의해 증착한 BiFeO3 박막의 전기 및 자기특성 (Electric and Magnetic Properties of Hetero-Epitaxially Deposited BiFeO3 Thin Films)

  • 이은구
    • 한국재료학회지
    • /
    • 제14권10호
    • /
    • pp.707-712
    • /
    • 2004
  • $BiFeO_3$ films grown on (111) $SrTiO_3$ substrate have a rhombohedral structure, identical to that of single crystals. On the other hand, films grown on (110) or (001) $SrTiO_3$ substrate are monoclinically distorted from the rhombohedral structure due to the epitaxial constraint. The easy axis of spontaneous polarization is close to [111] for the variously oriented films. Dramatically enhanced polarization and magnetization have been found for hetero-epitaxially grown $BiFeO_3$ thin films comparing to that of $BiFeO_3$ crystals. The results are explained in terms of an epitaxially-induced transition between cycloidal and homogeneous spin states, via magneto-electric interactions.

RF 마그네트론 스퍼터링법으로 증착된 Multiferroic BiFeO3 박막의 미세구조 및 자기적 특성 (Microstructures and Magnetic Properties of Multiferroic BiFeO3 Thin Films Deposited by RF Magnetron Sputtering Method)

  • 송종한;남중희;강대식;조정호;김병익;최덕균;전명표
    • 한국자기학회지
    • /
    • 제20권6호
    • /
    • pp.222-227
    • /
    • 2010
  • RF 마그네트론 스퍼터링법을 이용하여 Pt/Ti/$SiO_2$/Si(100) 기판위에 $BiFeO_3$ 박막을 증착하였고, 스퍼터링 공정에서 산소량이 $BiFeO_3$ 박막에 미치는 영향을 조사하였다. $BiFeO_3$ 박막은 XRD 회절패턴의 결과를 통하여 소량의 불순물상이 존재하는 페로브스카이트 구조로 결정화되었다. $O_2$ 가스의 유량은 박막의 미세구조 및 자기적 특성에 많은 영향을 끼친다. $O_2$ 가스의 유량이 증가함에 따라 박막의 표면 거칠기 및 grain size가 증가하였다. $BiFeO_3$ 박막은 상온에서 약자성적인 거동을 보였으며, PFM 측정을 통하여 박막의 미세구조와 압전계수와의 상관관계를 조사하였다.

화학 용액 증착법으로 제조한 Bi0.9A0.1Fe0.975Zn0.025O3-δ (A=Eu, Dy) 박막의 구조와 전기적 특성 (Structural and Electrical Properties of Bi0.9A0.1Fe0.975Zn0.025O3-δ (A=Eu, Dy) BiFeO3 Thin Films by Chemical Solution Deposition)

  • 김윤장;김진원;장성근
    • 한국전기전자재료학회논문지
    • /
    • 제31권4호
    • /
    • pp.226-230
    • /
    • 2018
  • Pure $BiFeO_3$ (BFO) and codoped $Bi_{0.9}A_{0.1}Fe_{0.975}Zn_{0.025}O_{3-{\delta}}$ (A=Eu, Dy) thin films were prepared on Pt(111)/Ti/$SiO_2$/Si(100) substrates by chemical solution deposition. The remnant polarizations (2Pr) of the $Bi_{0.9}Eu_{0.1}Fe_{0.975}Zn_{0.025}O_{3-{\delta}}$ (BEFZO) and $Bi_{0.9}Dy_{0.1}Fe_{0.975}Zn_{0.025}O_{3-{\delta}}$ (BDFZO) thin films were about 36 and $26{\mu}C/cm^2$ at the maximum electric fields of 900 and 917 kV/cm, respectively, at 1 kHz. The codoped BEFZO and BDFZO thin films showed improved electrical properties, and leakage current densities of 3.68 and $1.21{\times}10^{-6}A/cm^2$, respectively, which were three orders of magnitude lower than that of the pure BFO film, at 100 kV/cm.

Bi 첨가량에 따른 BLT 박막의 유전특성 (Dielectric properties of $Bi_{3.25}La_{0.75}Ti_3O_{12}$ thin films with Bi contents)

  • 김경태;김창일;강동희;심일운
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2002년도 하계학술대회 논문집
    • /
    • pp.371-374
    • /
    • 2002
  • Bismuth lanthanum titanate thin films with excess Bi contents were prepared onto Pt/Ti/$SiO_2$/Si substrate by metalorganic decomposition (MOD) technique. The structure and morphology of the films were analyzed using X-ray diffraction (XRD) and atomic force microscopy (AFM), respectively. From the XRD analysis, BLT thin films show polycrystalline structure and the layered-perovskite phase was obtained over 10% excess of Bi contents. As a result of ferroelectric characteristics related to the Bi content of the BLT thin film, the remanent polarization and dielectric constant decreased with increasing over Bi content of 10 % excess. The BLT film with Bi content of 10% excess was measured to have a dielectric constant of n9 and dielectric loss of 1.85[%]. The BLT thin films showed little polarization fatigue test up to 3.5 x $10^{9}$ bipolar switching cycling.

  • PDF

Random-Oriented (Bi,La)4Ti3O12 Thin Film Deposited by Pulsed-DC Sputtering Method on Ferroelectric Random Access Memory Device

  • Lee, Youn-Ki;Ryu, Sung-Lim;Kweon, Soon-Yong;Yeom, Seung-Jin;Kang, Hee-Bok
    • Transactions on Electrical and Electronic Materials
    • /
    • 제12권6호
    • /
    • pp.258-261
    • /
    • 2011
  • A ferroelectric $(Bi,La)_4Ti_3O_{12}$ (BLT) thin film fabricated by the pulsed-DC sputtering method was evaluated on a cell structure to check its compatibility to high density ferroelectric random access memory (FeRAM) devices. The BLT composition in the sputtering target was $Bi_{4.8}La_{1.0}Ti_{3.0}O_{12}$. Firstly, a BLT film was deposited on a buried Pt/$IrO_x$/Ir bottom electrode stack with W-plug connected to the transistor in a lower place. Then, the film was finally crystallized at $700^{\circ}C$ for 30 seconds in oxygen ambient. The annealed BLT layer was found to have randomly oriented and small ellipsoidal-shaped grains (long direction: ~100 nm, short direction: ~20 nm). The small and uniform-sized grains with random orientations were considered to be suitable for high density FeRAM devices.

Fabrication of Nd-Substituted Bi4Ti3O12 Thin Films by Metal Organic Chemical Vapor Deposition and Their Ferroelectrical Characterization

  • Kim, Hyoeng-Ki;Kang, Dong-Kyun;Kim, Byong-Ho
    • 한국세라믹학회지
    • /
    • 제42권4호
    • /
    • pp.219-223
    • /
    • 2005
  • A promising capacitor, which has conformable step coverage and good uniformity of thickness and composition, is needed to manufacture high-density non-volatile FeRAM capacitors with a stacked cell structure. In this study, ferroelectric $Bi_{3.61}Nd_{0.39}Ti_3O_{12}$ (BNdT) thin films were prepared on $Pt(111)/TiO_2/SiO_2/Si$ substrates by the liquid delivery system MOCVD method. In these experiments, $Bi(ph)_{3}$, $Nd(TMHD)\_{3}$ and $Ti(O^iPr)_{2}(TMHD)_{2}$ were used as the precursors and were dissolved in n-butyl acetate. The BNdT thin films were deposited at a substrate temperature and reactor pressure of approximately $600^{\circ}C$ and 4.8 Torr, respectively. The microstructure of the layered perovskite phase was observed by XRD and SEM. The remanent polarization value (2Pr) of the BNdT thin film was $31.67\;{\mu}C/cm^{2}$ at an applied voltage of 5 V.

Magnetic Properties of Multiferroic $BiFeO_3/BaTiO_3$ Bi-layer Thin Films

  • Yang, P.;Byun, S.H.;Kim, K.M.;Lee, Y.H.;Lee, J.Y.;Zhu, J.S.;Lee, H.Y.
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2008년도 하계학술대회 논문집 Vol.9
    • /
    • pp.318-319
    • /
    • 2008
  • In this article, magnetic properties of multiferroic bi-layer $BiFeO_3$ (BFO)/$BaTiO_3$ (BTO) thin films were studied. It was found that the magnetization increased by the insertion of BTO buffer layer even though the interfacial stress was slightly relaxed, which indicated a coupling between the ferroelectric and ferromagnetic orders. Furthermore, with slightly increase of BFO film thickness, both BFO and BFO/BTO bi-layer films showed anisotropic magnetic properties with higher in-plane magnetization than the values measured out-of-plane. These are attributable to strain constraint effect at the interface.

  • PDF

Epitaxial Growth of $BiFeO_3-Ba(Cu_{1/3}Nb_{2/3})O_3$ Thin Films Deposited by Pulsed Laser Deposition

  • 백창우;이종필;성길동;정종훈;류정호;윤운하;박동수;정대용
    • 한국재료학회:학술대회논문집
    • /
    • 한국재료학회 2011년도 춘계학술발표대회
    • /
    • pp.30.1-30.1
    • /
    • 2011
  • Multiferroic thin films with composition $0.9BiFeO_3-0.1Ba(Cu_{1/3}Nb_{2/3})O_3$ were epitaxially grown by pulsed laser deposition on $SrRuO_3(001)/SrTiO_3$ (000) substrate $0.9BiFeO_3-0.1Ba(Cu_{1/3}Nb_{2/3})O_3$, which is assumed to be morphotropic phase boundary (MPB), that showed superior dielectric, ferroelectric and magnetic properties in our study on polycrystalline films. The structures of epitaxially grown films were characterized by means of XRD. From P-E measurements, samples exhibited typical ferroelectric hysteresis loops and large remnant polarization, whose value is much larger than those of pure BFO film. The enhancement of dielectric, ferroelectric, magnetic properties was attributed to the structural distortion induced by the BCN addition and the high physical stress effect.

  • PDF