• 제목/요약/키워드: Bi0.5Na0.5TiO3

검색결과 80건 처리시간 0.025초

Effect of Ta-Substitution on the Ferroelectric and Piezoelectric Properties of Bi0.5/(Na0.82K0.18)0.5TiO3 Ceramics

  • Do, Nam-Binh;Lee, Han-Bok;Yoon, Chang-Ho;Kang, Jin-Kyu;Lee, Jae-Shin;Kim, Ill-Won
    • Transactions on Electrical and Electronic Materials
    • /
    • 제12권2호
    • /
    • pp.64-67
    • /
    • 2011
  • The effect of Ta substitution on the crystal structure, ferroelectric, and piezoelectric properties of $Bi_{0.5}(Na_{0.82}K_{0.18})_{0.5}Ti_{1-x}Ta_xO_3$ ceramics has been investigated. The Ta doping resulted in a transition from coexistence of ferroelectric tetragonal and rhombohedral phases to an electrostrictive pseudocubic phase, leading to degradations of the remnant polarization, coercive field, and piezoelectric coefficient $d_{33}$. However, the electricfield-induced strain was significantly enhanced by the Ta substitution-induced phase transition and reached a highest value of $S_{max}/E_{max}$ = 566 pm/V under an applied electric field 6 kV/mm when 2% Ta was substituted on Ti sites. The abnormal enhancement in strain was attributed to the pseudocubic phase with high electrostrictive constants.

Enhanced Piezoelectric Properties of Lead-Free La and Nb Co-Modified Bi0.5(Na0.84K0.16)0.5TiO3-SrTiO3 Ceramics

  • Malik, Rizwan Ahmed;Hussain, Ali;Maqbool, Adnan;Zaman, Arif;Song, Tae Kwon;Kim, Won Jeong;Kim, Myong Ho
    • 한국재료학회지
    • /
    • 제25권6호
    • /
    • pp.288-292
    • /
    • 2015
  • New lead-free piezoelectric ceramics $0.96[\{Bi_{0.5}(Na_{0.84}K_{0.16})_{0.5}\}_{1-x}La_x(Ti_{1-y}Nb_y)O_3]-0.04SrTiO_3$ (BNKT-ST-LN, where $x=y=0.00{\leq}(x=y){\leq}0.015)$ were synthesized using the conventional solid-state reaction method. Their crystal structure, microstructure, and electrical properties were investigated as a function of the La and Nb (LN) content. The X-ray diffraction patterns revealed the formation of a single-phase perovskite structure for all the LN-modified BNKT-ST ceramics in this study. The temperature dependence of the dielectric curves showed that the maximum dielectric constant temperature ($T_m$) shifted towards lower temperatures and the curves became more diffuse with an increasing LN content. At the optimum composition (LN 0.005), a maximum value of remnant polarization ($33C/cm^2$) with a relatively low coercive field (22 kV/cm) and high piezoelectric constant (215 pC/N) was observed. These results indicate that the LN co-modified BNKT-ST ceramic system is a promising candidate for lead-free piezoelectric materials.

비납계 (Bi1/2Na1/2)TiO3-Ba(Cu1/3Nb2/3)O3 세라믹의 압전 및 변위 특성 (Piezoelectric and Strain Properties of Lead-free (Bi1/2Na1/2)TiO3-Ba(Cu1/3Nb2/3)O3 Ceramics)

  • 류정호;정대용
    • 한국재료학회지
    • /
    • 제21권11호
    • /
    • pp.628-633
    • /
    • 2011
  • Studies on lead-free piezoelectrics have been attractive as means of meeting environmental requirements. We synthesized lead-free piezoelectric $(Bi_{1/2}Na_{1/2})TiO_3-Ba(Cu_{1/3}Nb_{2/3})O_3$ (BNT-BCN) ceramics, and their dielectric, piezoelectric, and strain behavior were characterized. As BCN with a tetragonal phase was incorporated into the rhombohedral BNT lattice, the lattice constant increased. A small amount of BCN increased the density and dielectric constant forming the complete solid solution with BNT. However, BCN above 10 mol% was precipitated into a separate phase, and which was detected with XRD. In addition, EDX measurement revealed that Cu in BCN was not distributed homogeneously but was accumulated in a certain area. A lower density with a large amount of BCN was attributed to the nonsinterable property of BCN with large tetragonaliy. The dielectric constant vs the temperature change and the strain vs the electric field indicated that the ferroelectric property of BNT was diminished and paraelectric behavior was enhanced with the BCN addition. BNT-7.5BCN showed a 0.11% unimorph strain with a 9.0 kV/mm electric field with little hysteresis.

Processing, structure, and properties of lead-free piezoelectric NBT-BT

  • Mhin, Sungwook;Lee, Jung-Il;Ryu, Jeong Ho
    • 한국결정성장학회지
    • /
    • 제25권4호
    • /
    • pp.160-165
    • /
    • 2015
  • Lead-free piezoelectric materials have been actively studied to substitute for conventional PZT based solid solution, $Pb(Zr_xTi_{1-x}O_3)$, which occurs unavoidable PbO during the sintering process. Among them, Bismuth Sodium Titanate, $Na_{0.5}Bi_{0.5}TiO_3$ (abbreviated as NBT) based solid solution is attracted for the one of excellent candidates which shows the strong ferroelectricity, Curie temperature (Tc), remnant polarization (Pr) and coercive field (Ec). Especially, the solid solution of rhombohedral phase NBT with tetragonal perovskite phase has a rhombohedral - tetragonal morphotropic phase boundary. Modified NBT with tetragonal perovskite at the region of MPB can be applied for high frequency ultrasonic application because of not only its low permittivity, high electrocoupling factor and high mechanical strength, but also effective piezoelectric activity by poling. In this study, solid state ceramic processing of NBT and modified NBT, $(Na_{0.5}Bi_{0.5})_{0.93}Ba_{0.7}TiO_3$ (abbreviated as NBT-7BT), at the region of MPB using 7 % $BaTiO_3$ as a tetragonal perovskite was introduced and the structure between NBT and NBT-7BT were analyzed using rietveld refinement. Also, the ferroelectric and piezoelectric properties of NBT-7BT such as permittivity, piezoelectric constant, polarization hysteresis and strain hysteresis loop were compared with those of pure NBT.

Concentration dependent dielectric properties of Barium Titanate/Polyvenylidene Fluoride (PVDF) and (Bi0.5Na0.5)0.94Ba0.06TiO3/Poly(VDF-TrFE) composite

  • Roy, Ansu K.;Ahmad, Z.;Prasad, A.;Prasad, K.
    • Advances in materials Research
    • /
    • 제1권4호
    • /
    • pp.285-297
    • /
    • 2012
  • The present study addresses the problem of quantitative prediction of effective complex relative permittivity of Barium Titanate/Polyvenylidene Fluoride (PVDF) and $(Bi_{0.5}Na_{0.5})_{0.94}Ba_{0.06}TiO_3$/Poly(VDF-TrFE) biphasic ceramic-polymer composites. Theoretical results for effective relative permittivity derived from several dielectric mixture equations were fitted to the experimental data taken from the works of Prasad et al. (2010), Wang et al. (2004), Takenaka et al. (1991) and Yamada et al. (1982). The study revealed that out of the different test equations, only a few equations like modified Rother-Lichtenecker equation, Dias-Dasgupta equation or Rao equation for the real part and Bruggeman equation for the imaginary part of complex permittivity well fitted the corresponding experimental results. In the present study, some of the equations were used in their original forms, while some others were modified by choosing suitable shape-dependent parameters in order to get reasonably good agreement with experimental results. Besides, the experimental results have been proposed in the form of a mathematical model using first order exponential growth, which provided excellent fits.

무연 BNBT 세라믹스의 압전특성에 미치는 La2O3의 영향 (Effects of La2O3 on the Piezoelectric Properties of Lead-Free (Bi0.5Na0.5)0.94Ba0.06TiO3 Piezoelectric Ceramics)

  • 손영진;윤만순;어순철
    • 한국재료학회지
    • /
    • 제15권12호
    • /
    • pp.756-759
    • /
    • 2005
  • A lead free piezoelectric material, bismuth sodium barium titanate $(Bi_{0.5}Na_{0.5})_{0.94}Ba_{0.06}TiO_3$ (BNBT), was considered as an environment-friendly alternatives for the current PZT system. A perovskite BNBT was synthesized by conventional bulk ceramic processing technique. In order to improve piezoelectric properties, $La_2O_3$ as a dopant was incorporated into the BNBT system up to 0.025 moi, ana the effects on subsequent the piezoelectric ana dielectric properties were systematically investigated. With increasing $La_2O_3$ contents, the equilibrium grain shape was remarkably evidenced and sintered density was increased. Piezoelectric and dielectric properties were s]town to have maximum values at the $La_2O_3$ contents of 0.02 mol. $La^{3+}$ ions seemed to act as a softener in the BNBT system and to enhance dielectric and piezoelectric properties in this study.

The Study on the Phase Transition and Piezoelectric Properties of Bi0.5(Na0.78K0.22)0.5TiO3-LaMnO3 Lead-free Piezoelectric Ceramics

  • Lee, Ku Tak;Park, Jung Soo;Cho, Jeong Ho;Jeong, Young Hun;Paik, Jong Hoo;Yun, Ji Sun
    • 한국세라믹학회지
    • /
    • 제52권4호
    • /
    • pp.237-242
    • /
    • 2015
  • $Bi_{0.5}(Na_{0.78}K_{0.22})_{0.5}TiO_3$ (BNKT) lead-free piezoelectric ceramics modified by $LaMnO_3$ (LM) were fabricated by conventional solid-state method. The crystal structure and the morphology of the lead free ceramics were analyzed by XRD (X-ray diffraction) and FE-SEM (Field Emission Scanning Electron Microscopy). The LM modified BNKT ceramics have a phase transition from ferroelectric tetragonal to non-polar pseudo-cubic. Despite decreases in the remnant polarization ($P_r$) and coercive field ($E_c$) in the P-E hysteresis loops, the electric-field induced strain properties were significantly enhanced by the LM modification. The highest value of $S_{max}/E_{max}=412pm/V$ at an applied electric field of 5 kV/mm was found in BNKT-0.01LM ceramic.

ZnO첨가에 따른 무연 BNKT계 세라믹스의 압전특성 (Piezoelectric properties of Pb-free BNKT ceramics with ZnO addition)

  • 류성림;김주현;이미영;류주현;서상현;정광현
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2005년도 추계학술대회 논문집 Vol.18
    • /
    • pp.193-195
    • /
    • 2005
  • [ $0.96[Bi_{0.5}(Na_{0.84}K_{0.16})_{0.5}TiO_3]+0.04SrTiO_3+0.3wt%Nb_2O_5+0.2wt%La_2O_3+xwt%ZnO$ ], were studied in order to develope the superior piezoelectric properties of Lead-free piezoelectric ceramics. With increasing amount of ZnO addition, density showed the maximum value of 5.79(g/$cm^3$) at 0wt% ZnO addition, and electromechanical coupling factor($k_p$) and dielectric constant decreased, and mechanical quality factor($Q_m$) increased and showed the maximum value of 280 at 0.4wt% ZnO addition.

  • PDF

Effects of High-Energy Ball Milling and Sintering Time on the Electric-Field-Induced Strain Properties of Lead-Free BNT-Based Ceramic Composites

  • Nga-Linh Vu;Nga-Linh Vu;Dae-Jun Heo;Thi Hinh Dinh;Chang Won Ahn;Chang Won Ahn;Hyoung-Su Han;Jae-Shin Lee
    • 한국전기전자재료학회논문지
    • /
    • 제36권5호
    • /
    • pp.505-512
    • /
    • 2023
  • This study investigated crystal structures, microstructures, and electric-field-induced strain (EFIS) properties of Bi-based lead-free ferroelectric/relaxor composites. Bi1/2Na0.82K0.18)1/2TiO3 (BNKT) as a ferroelectric material and 0.78Bi1/2(Na0.78K0.22)1/2TiO3-0.02LaFeO3 (BNKT2LF) as a relaxor material were synthesized using a conventional solid-state reaction method, and the resulting BNKT2LF powders were subjected to high-energy ball milling (HEBM) after calcination. As a result, HEBM proved a larger average grain size of sintered samples compared to conventional ball milling (CBM). In addition, the increased sintering time led to grain growth. Furthermore, HEBM treatment and sintering time demonstrated a significant effect on EFIS of BNKT/BNKT2LF composites. At 6 kV/mm, 0.35% of the maximum strain (Smax) was observed in the HEBM sample sintered for 12 h. The unipolar strain curves of CBM samples were almost linear, indicating almost no phase transitions, while HEBM samples displayed phase transitions at 5~6 kV/mm for all sintering time levels, showing the highest Smax/Emax value of 700 pm/V. These results indicated that HEBM treatment with a long sintering time might significantly enhance the electromechanical strain properties of BNT-based ceramics.