Browse > Article
http://dx.doi.org/10.12989/amr.2012.1.4.285

Concentration dependent dielectric properties of Barium Titanate/Polyvenylidene Fluoride (PVDF) and (Bi0.5Na0.5)0.94Ba0.06TiO3/Poly(VDF-TrFE) composite  

Roy, Ansu K. (University Department of Physics, T. M. Bhagalpur University)
Ahmad, Z. (University Department of Physics, T. M. Bhagalpur University)
Prasad, A. (University Department of Physics, T. M. Bhagalpur University)
Prasad, K. (Centre for Applied Physics, Central University of Jharkhand)
Publication Information
Advances in materials Research / v.1, no.4, 2012 , pp. 285-297 More about this Journal
Abstract
The present study addresses the problem of quantitative prediction of effective complex relative permittivity of Barium Titanate/Polyvenylidene Fluoride (PVDF) and $(Bi_{0.5}Na_{0.5})_{0.94}Ba_{0.06}TiO_3$/Poly(VDF-TrFE) biphasic ceramic-polymer composites. Theoretical results for effective relative permittivity derived from several dielectric mixture equations were fitted to the experimental data taken from the works of Prasad et al. (2010), Wang et al. (2004), Takenaka et al. (1991) and Yamada et al. (1982). The study revealed that out of the different test equations, only a few equations like modified Rother-Lichtenecker equation, Dias-Dasgupta equation or Rao equation for the real part and Bruggeman equation for the imaginary part of complex permittivity well fitted the corresponding experimental results. In the present study, some of the equations were used in their original forms, while some others were modified by choosing suitable shape-dependent parameters in order to get reasonably good agreement with experimental results. Besides, the experimental results have been proposed in the form of a mathematical model using first order exponential growth, which provided excellent fits.
Keywords
ceramic-polymer composite; permittivity; dielectric loss; model fitting;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Takenaka, T., Maruyama K.I. and Sakata, K. (1991), "$(Bi_{1/2}Na_{1/2})TiO_3-BaTiO_3$ system for lead-free piezoelectric ceramics", Jpn. J. Appl. Phys., 30, 2236-2239.   DOI
2 Taylor, L. (1965), "Dielectric properties of mixtures", IEEE T. Antenn. Propag., 13(6), 943-947.   DOI
3 Wang, X.X., Lam, K.H., Tang, X.G. and Chan, H.L.W. (2004), "Dielectric characteristics and polarization response of lead-free ferroelectric (Bi_{0.5}Na_{0.5})_{0.94}Ba_{0.06}TiO_3$-P(VDF-TrFE) 0-3 composites", Solid State Commun., 130(10), 695-699.   DOI   ScienceOn
4 Webman, I., Jortner, J. and Cohen, M.H. (1977), "Theory of optical and microwave properties of microscopically inhomogeneous materials", Phys. Rev. B, 15(12), 5712-5723.   DOI
5 Wiener, O. (1912), "Die Theorie des Mischkorpers fr das Feld der Stationaren Strdmung", Abh. Math. Phys. Kl. Sachs Akad. Wiss: Leipzig, 32, 509-514.
6 Xie, S.H. Zhu, B.K., Wei, X.Z., Xu, Z.K. and Xu, Y.Y. (2005), "Polyimide/$BaTiO_3$ composites with controllable dielectric properties", Compos. Part A - Appl. S., 36(8), 1152-1157.   DOI   ScienceOn
7 Yamada, T., Ueda, T. and Kitayama, T. (1982), "Piezoelectricity of a high-content lead zirconate titanate/polymer composite", J. Appl. Phys., 53(6), 4328-4333.   DOI   ScienceOn
8 Kutnjak, Z., Vodopivec, B., KuöËer, D., Kosec, M., Bobnar, V. and Hilczer, B. (2005), "Calorimetric anddielectric study of vinylidene fluoride-trifluoroethylene-based composite", J. Non-Cryst. Solids, 351(14-15), 1261-1265.   DOI   ScienceOn
9 Lam, K.H. Wang, X. and Chan, H.L.W. (2005), "Piezoelectric and pyroelectric properties of $(Bi_{0.5}Na_{0.5})_{0.94}Ba_{0.06}TiO_3$/P(VDF-TrFE) 0-3 composites", Compos. Part A - Appl. S., 36(11), 1595-1599.   DOI   ScienceOn
10 Lam, K.H., Chan, H.L.W., Luo, H.S., Yin, Q.R., Yin, Z.W. and Choy, C.L. (2003), "Dielectric properties of 65PMN-35PT/P(VDF-TrFE) 0-3 composites", Microelectron. Eng., 66(1-4), 792-797.   DOI   ScienceOn
11 Levassort, F., Topolov, V.Y. and Lelhiecq, M. (2000), "A comparative study of different methods of evaluating effective electromechanical properties of 0-3 and 1-3 ceramic/polymer composites", J. Phys. D Appl. Phys., 33(16), 2064-2069.   DOI   ScienceOn
12 Newnham, R.E, Skinner, D.P. and Cross, L.E. (1978), "Connectivity and piezoelectric-pyroelectric composites", Mater. Res. Bull., 13(5), 525-536.   DOI   ScienceOn
13 Newnham, R.E., Bowen, L.J., Klicker, K.A. and Cross. L.E. (1980), "Composite piezoelectric transducers", Mater. Eng., 2(2), 93-106.
14 Newnham, R.E., Skinner, D.P., Klicker, K.A., Bhalla, A.S., Hardiman, B. and Gururaja, T.R. (1980), "Ferroelectric ceramic-plastic composites for piezoelectric and pyroelectric applications", Ferroelectrics, 27(1), 49-55.   DOI   ScienceOn
15 Poon, Y.M. and Shin, F.G. (2004), "A simple explicit formula for the effective dielectric constant of binary 0-3 composites", J. Mater. Sci., 39(4), 1277-1281.   DOI
16 Popielarz, R., Chiang, C.K., Nozaki, R. and Obrzut, J. (2001), "Dielectric properties of polymer/ferroelectric ceramic composites from 100 Hz to 10 GHz", Macromolecules, 34(17), 5910-5915.   DOI   ScienceOn
17 Prasad, A. and Prasad, K. (2007), "Effective permittivity of random composite media: A comparative study", Phys. B Conden. Mat., 396(1-2), 132-137.   DOI
18 Prasad, A., Bagchi, S. and Pathak, S.C. (2001), "Empirical formulation of permittivity build-up of bound rutile samples-I", Indian J. Pure Ap. Phy., 39(6), 397-405.
19 Prasad, K., Prasad, A., Chandra, K.P. and Kulkarni, A.R. (2010), "Electrical conduction in 0-3 $BaTiO_3$/PVDF composites", Int. Ferroelectrics, 117(1), 55-67.   DOI
20 Rao, Y., Qu, J. Wong, C.P. and Marinis, T. (2000), "A precise numerical prediction of effective dielectric constant for polymer-ceramic composite based on effective-medium theory", IEEE T. Compon. Pack. T., 23(4), 680-683.   DOI   ScienceOn
21 Shrout, T.R., Bawen, L.J. and Schulze, W.A. (1980), "Extruded PZT/polymer composites for electromechanical transducer applications", Mater. Res. Bull., 15(10), 1371-1379.   DOI   ScienceOn
22 Skipetrov, S.E. (1999), "Effective dielectric function of a random medium", Phys. Rev. B, 60(18), 12705-12709.   DOI
23 Smay, J.E., Cesarano, J., Tuttle, B.A. and Lewis, J.A. (2002), "Piezoelectric properties in the composite systems of polymers and PZT ceramics", J. Appl. Phys., 50(7), 6119-6127.
24 Al-Jishi, R. and Taylor, P.L. (1985), "Equilibrium polarization and piezoelectric and pyroelectric coefficients in poly(vinylidene fluoride)", J. Appl. Phys., 57(3), 902-906.   DOI   ScienceOn
25 Brookner, E. (1988), "Aspects of modern radars", Artech House, Norwood, MA.
26 Bruggeman, D.A.G. (1935), "Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen. I. DielektrizitaEtskonstanten und LeitfaEhigkeiten der MischkoErper aus isotropen Substanzen", Ann. Phys. Lpz., 416(7), 636-664.   DOI
27 Cui, C., Baughman, R.H., lgbal, Z., Kazmar, T.R. and Dalstrom, D.K. (1997), "Improved piezoelectric ceramic/polymer composites for hydrophone applications", Synthetic Met., 85(1-3), 1391-1392.   DOI   ScienceOn
28 Dang, Z.M. and Nan, C.W. (2005), "Dielectric properties of LTNO ceramics and LTNO/PVDF composites", Ceram. Int., 31(2), 349-351.   DOI   ScienceOn
29 Das, C.J. and Das-Gupta, D.K. (1994), "Ferroelectric polymers and ceramic-polymer composites", Key Eng. Mater., 92-93, 217-248.   DOI
30 Das, C.J. and Das-Gupta, D.K. (1996), "Inorganic ceramic/polymer ferroelectric composite electrets", IEEE T. Dielect El. In., 3(5), 706-734.   DOI   ScienceOn
31 Dionne, F.F., Firtzgerald, J.F. and Aucoin, R.C. (1976), "Dielectric constants of paraffin wax $TiO_2$ mixtures", J. Appl. Phys., 47(4), 1708-1709.   DOI
32 Furukawa, T. (1989), "Piezoelectricity and pyroelectricity in polymers", IEEE T. El. In., 24(3), 375-394.   DOI
33 Furukawa, T., Ishida, K. and Fukuda, E. (1979), "Piezoelectric properties in the composite systems of polymers and PZT ceramics", J. Appl. Phys., 50(7), 4904-4913.   DOI   ScienceOn
34 Jayasundere, N., Smith, B.V. and Dunn, J.R. (1994), "Piezoelectric constant for binary piezoelectric 0-3 connectivity composites and the effect of mixed connectivity", J. Appl. Phys., 76(5), 2993-2999.   DOI   ScienceOn
35 Goel, M. (2004), "Recent developments in electroceramics: MEMS applications for energy and environment", Ceram. Int., 30(7), 1147-1154.   DOI   ScienceOn
36 Hashin, Z. and Shtrikman, S.A. (1963), "A variational approach to the theory of the elastic behaviour of multiphase materials", J. Mech. Phys. Solids, 11(2), 127-140.   DOI   ScienceOn
37 Jayasundere, N. and Smith, B.V. (1993), "Dielectric constant for binary piezoelectric 0-3 composites", J. Appl. Phys., 73(5), 2462-2467.   DOI   ScienceOn
38 Jha, A.K. and Prasad, K. (2010), "Ferroelectric $BaTiO_3$ nanoparticles: biosynthesis and characterization", Colloid. Surface B., 75(1), 330-334.   DOI   ScienceOn
39 Kerner, E.H. (1956), "The electrical conductivity of composite media", Proc. Phys. Soc., 69(8), 802-807.   DOI   ScienceOn
40 Knott, E.F. (1993), "Dielectric constant of plastic foams", IEEE T. Antenn. Propag., 41(8), 1167-1171.   DOI   ScienceOn
41 Kuo, D.H., Chang, C.C., Su, T.Y., Wang W.K. and Lin, B.Y. (2004), "Dielectric properties of three ceramic/epoxy composites", Mater. Chem. Phys., 85(1), 201-206.   DOI   ScienceOn
42 Ahmad, Z., Prasad, A. and Prasad, K. (2009), "A comparative approach to predicting effective dielectric, piezoelectric and elastic properties of PZT/PVDF composites", Phys. B: Conden. Matter, 404(20), 3637-3644.   DOI   ScienceOn