• Title/Summary/Keyword: Bi-directional load test

Search Result 55, Processing Time 0.023 seconds

A Numerical Analysis Study for Estimation of Ultimate Bearing Capacity and An Analysis of the High Capacity Bi-directional Pile Load Tests of the Large-diameter Drilled Shafts (대구경 현장타설말뚝의 대용량 양방향 말뚝재하시험 분석 및 극한지지력 추정을 위한 수치해석 연구)

  • Nam, Moonsuk;Kim, Sangil;Hong, Seokwoo;Hwang, Seongchun;Choi, Yongkyu
    • Journal of the Korean GEO-environmental Society
    • /
    • v.12 no.10
    • /
    • pp.63-72
    • /
    • 2011
  • The high capacity bi-directional pile load test is an optimum pile load test method for high-rised buildings. Especially, a high pressure and double-acting bi-directional pile load testing, a special type of the high capacity bi-directional pile load test, is the most practical way to overcome limitations of loading capacities and constraints of field conditions, which was judged to be a very useful test method for requiring high loading capacities. Total of 2 high capacity bi-directional pile load tests(P-1 and P-2) were conducted in high-rised building sites in Korea. Based on the field load test results, the sufficiency ratio of loading capacities to design loads for P-1 and P-2 were 3.3 and 2.1, respectively. For P-2, the load test could not verify the design load if 1-directional loads applied slightly smaller than the actual applied load. Also, high capacity bi-directional pile load tests were difficult to determine an ultimate state of ground or piles, although the loads were applied until their maximum loads. Hence, finite element analyses were conducted to determine their ultimate states by calibrating and extrapolate with test results.

Applicability of Bi-directional Load Test for Evaluating Bearing Capacity of Helical Piles (헬리컬 파일의 지지력 산정을 위한 양방향 재하시험의 적용성 평가)

  • Lee, Dongseop;Na, Kyunguk;Lee, Wonje;Kim, Hyung-Nam;Choi, Hangseok
    • Journal of the Korean Geosynthetics Society
    • /
    • v.13 no.4
    • /
    • pp.77-85
    • /
    • 2014
  • The helical pile has become popular with some constructional advantages because relatively compact equipment is needed for installing helical piles. However, field loading tests for estimating the bearing capacity of helical piles have drawbacks that the required dead load should be as much as the operation load, and reaction piles or anchors are required. In this paper, the bi-directional load test without necessity of reaction piles and loading frames was applied to the helical pile, and the load-settlement curves of the helical piles were measured. The bi-directional load test was performed in two separate stages with the aid of a special hydraulic cylinder whose diameter is equal to that of the pile shaft. In the first stage, the hydraulic cylinder is assembled immediately above the bottom helix plate, and the end bearing capacity of the helical pile is measured. In the second stage, the hydraulic cylinder is assembled above the top helix plate, and the skin friction of the helical pile is measured. The pile loading-test program was carried out for the two different helical piles with the shaft diameter of 89 mm and 114 mm, respectively. However, the configuration of helix plates is identical with three helix plates of 450-, 350-, 200- mm diameter. Results of the bi-directional load test were verified by the conventional static pile loading test. As a result, the bearing capacity estimated by the bi-directional load test is in good agreement with the result of the conventional pile loading test.

Method of Estimating Pile Load-displacement Curve Using Bi-directional Load Test (양방향 재하시험을 이용한 말뚝의 하중-변위곡선 추정방법)

  • Kwon Oh-Sung;Choi Yong-Kyu;Kwon Oh-Kyun;Kim Myoung-Mo
    • Journal of the Korean Geotechnical Society
    • /
    • v.22 no.4
    • /
    • pp.11-19
    • /
    • 2006
  • For the last decade, the hi-directional testing method has been advantageous over the conventional pile load testing method in many aspects. However, because the hi-directional test uses a loading mechanism entirely different from that of the conventional pile load testing method, many investigators and practicing engineers have been concerned that the hi-directional test would give inaccurate results, especially about the pile head settlement behavior. Therefore, a hi-directional load test and the conventional top-down load test were executed on 1.5 m diameter cast-in-situ concrete piles at the same time and site. Strain gauges were placed on the piles. The two tests gave similar load transfer curves at various depth of piles. However, the top-down equivalent curve constructed from the hi-directional load test results predicted the pile head settlement under the pile design load to be about one half of that predicted by the conventional top-down load test. To improve the prediction accuracy of the top-down equivalent curve, a simple method that accounts for the pile compression is proposed. It was also shown that the strain gauge measurement data from the hi-directional load test could reproduce almost the same top-down curve.

Load-Settlement Behavior of Rock-socketed Drilled Shafts by Bi-directional Pile Load Test (양방향 말뚝선단재하시험에 의한 암반근입 현장타설말뚝의 하중-침하거동 분석)

  • Seol, Hoon-Il;Jeong, Sang-Seom;Han, Keun-Taek;Kim, Jae-Young
    • Journal of the Korean Geotechnical Society
    • /
    • v.24 no.11
    • /
    • pp.61-70
    • /
    • 2008
  • Load settlement behaviors and load transfer characteristics of rock-socketed pile subjected bi-directional load at pile tip were investigated using bi-directional pile load tests (BD PLT) performed on ten large-diameter drilled shafts at four sites. Based on test results, additional pile-toe displacement ($w_{bs}$) by coupled soil resistance was analyzed, and thus equivalent top loaded load-settlement curve of pile subjected bi-directional load was proposed by taking into account the coupled soil resistance. Through comparisons with field case studies, it is found that for test piles there exists effect of coupled soil resistance, which is represented by wbs, and thus an equivalent curve obtained by existing uncoupled methods can overestimate bearing capacity of piles by BD PLT. On the other hand, the analysis by the proposed method with soil coupling effect has a considerably larger settlement when compared with the results by uncoupled load transfer method and estimates reasonable load-settlement behaviors of test piles. In case of pile socketed in high strength rocks, however, effects of coupled soil resistance can be neglected.

Multi-spring model for 3-dimensional analysis of RC members

  • Li, Kang-Ning;Otani, Shunsuke
    • Structural Engineering and Mechanics
    • /
    • v.1 no.1
    • /
    • pp.17-30
    • /
    • 1993
  • A practical multi-spring model is proposed for a nonlinear analysis of reinforced concrete members, especially columns, taking into account the interaction of axial load and bi-directional bending moment. The parameters of the model are determined on the basis of material properties and section geometry. The axial force-moment interaction curve of reinforced concrete sections predicted by the model was shown to agree well with those obtained by the flexural analysis utilizing realistic stress-strain relations of materials. The reliability of the model was also examined with respect to the test of reinforced concrete columns subjected to varying axial load and bi-directional lateral load reversals. The analytical results agreed well with the experiment.

Load-Displacement Characteristics Study of Barrette Pile by Bi-directional Loading Test (양방향재하시험을 통한 바렛말뚝의 하중-침하특성 연구)

  • Lim, Dae-Sung;Park, Seong-Wan;Lee, Sang-Rae
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.10a
    • /
    • pp.754-759
    • /
    • 2008
  • Recently, the construction of buildings and large bridges has been increasing rapidly causing foundation structure growing larger then before, especially in the use of large size cast-in-place piles. Barrette Pile will usually be used at the site where diaphragm wall is the retaining wall to save time and cost in mobilization of equipments. This study uses bi-directional loading test data obtained from two different sites to observe the bearing capacity and displacement characteristics of barrette pile. Numerical analysis of the test is done by using commercial 3D computer program and the interface effect and capacity of the pile as well as displacement characteristics of the pile is verified.

  • PDF

A Scale-Effect of O-Cell Pile Load Test with Variable End Plate (가변선단재하판을 이용한 양방향말뚝재하시험의 치수 효과)

  • Joo, Yong-Sun;Kim, Nak-Kyung;Kim, Ung-Jin;Park, Jong-Sik
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.09a
    • /
    • pp.884-890
    • /
    • 2009
  • The bi-directional pile load test with variable end plate overcomes the shortcoming of the Osterberg cell test. It is possible that the ultimate bearing capacity of the bi-direction can be known by using the loading of the end plate and two step procedures. The first step is to confirming end bearing capacity with variable end plate and the second step is similar to the conventional O-cell test. In the study, To calculate ultimate capacity of bi-directional load test using model with the pile with variable end plate O-cell, operated with end plate of 3 type on sand layer according to the relative density, loose, medium and dense conditions.

  • PDF

Analysis of a Bi-directional Load Test Result on tong PHC Piles in Consideration of Residual Load (잔류하중을 고려한 장대 PHC 말뚝의 양방향 재하시험 결과해석)

  • Kim, Sung-Ryul;Chung, Sung-Gyo;Lee, Bong-Yeol
    • Journal of the Korean Geotechnical Society
    • /
    • v.24 no.6
    • /
    • pp.85-93
    • /
    • 2008
  • For long piles driven in deep clay deposits, it is difficult to estimate the ultimate bearing capacity due to large resistance induced by long embedded depth, and also the load transfer curve due to large residual load induced by negative skin friction, even with the performance of pile load tests. In this research, a hi-directional load test on a PHC pile driven in deep soft deposit was performed in order to evaluate the tip and shaft resistances separately, which are feasible to estimate the ultimate bearing capacity of the pile. Residual load of the pile was determined by continuous monitoring of pile strains after the pile installation. The true resistance and true load-movement curve of the pile were properly estimated by taking account of the residual load. A model far behavior of the shaft resistance vs. movement was also proposed, which includes the effects of residual load based on the experiment. Consequently, it was proved that the residual load should be taken into consideration for correctly analyzing load test results of piles in deep clay deposits.

Application of The Bi-Directional Pile Load Test for The Yield Capacity of Rock Socketed Pile (양방향재하시험을 활용한 암반근입 말뚝의 항복하중 판별방법)

  • Kim, Jong-Woong;Jang, Kyung-Jun;Kim, Hak-Moon
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.03a
    • /
    • pp.526-532
    • /
    • 2009
  • 말뚝의 정재하시험을 통하여 항복하중 및 극한하중을 판별하는 다양한 방법이 제안되어 왔다. 말뚝의 지지력은 주면마찰력과 선단지지력의 합으로 나타내어 왔으나 말뚝 재하시험을 통한 항복 하중 및 극한하중의 판별법은 대체로 총 침하량에 대해 판별하거나 재하하중-침하 그래프로부터 산정되는 경우가 대표적이다. 본 연구에서는 현장 대구경 양방향 재하시험 결과를 활용하여 말뚝의 주면부와 선단부로 나누어 항복하중을 판별할 수 있는 방법을 제안하고자 한다.

  • PDF

A Case Study of a Foundation Design and Construction of a High-rise Building Applying Bi-directional Pile Load Test(BD PLT) (양방향 말뚝재하시험(BD PLT)을 적용한 초고층 건축구조물의 기초설계 및 시공사례)

  • Kim, Sung-Ho;Lee, Min-Hee;Hwang, Geun-Bae;Choi, Yong-Kyu
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2006.10a
    • /
    • pp.539-550
    • /
    • 2006
  • New Songdo city is currently developing on the reclaimed land on a marine deposit and among the development the four sixty-four(64) stories high rise buildings are under construction at block 125. The ground condition of the site is comprised of a deep seated weathered rock staratum under a soft marine deposit layer. As a foundation system, a bored pile was planned to transmit the applied load to the stable layer. In this study, the behavior of the weathered rock especially locating at a upper part having a weak strength(HWR, MWR) has been evaluated through series of hi-directional pile load test(BD PLT) carried out on the 3 drilled shafts socketed in a weathered rock layer in a design stage. It has been planned to increase the effect of the tests that the length of test piles was prepared short enough to perform the test under a high stress. The summary of the design reflecting the test results has been made up. In addition, the 4 hi-directional pile tests excuted on the working piles during the construction stage for the purpose of confirmation and the evaluation of the adequacy of the pile behaviors have been included in this study.

  • PDF