• Title/Summary/Keyword: Beta-glucans

Search Result 76, Processing Time 0.021 seconds

${\beta}-Glucans$ in Barley and Oats and Their Changes in Solubility by Processing (보리와 귀리의 ${\beta}-Glucans$ 및 가공에 의한 용해성의 변화)

  • Lee, Young-Tack
    • Applied Biological Chemistry
    • /
    • v.39 no.6
    • /
    • pp.482-487
    • /
    • 1996
  • Five barley and two oat varieties grown in Korea were investigated for soluble, insoluble, and total $(1{\to}3)$, $(1{\to}4)-{\beta}-D-glucans$. Total and insoluble ${\beta}-glucans$ after extraction of soluble ${\beta}-glucans$ with water were analyzed, and the soluble ${\beta}-glucans$ were calculated as the difference between total and insoluble ${\beta}-glucans$. The total ${\beta}-glucans$ in whole barleys were in a range of $3.3{\sim}5.6%$(average 4.4%), and those in pearled barleys were In a range of $3.3{\sim}7.1%$(average 5.2%). In whole barleys, on average, 54% of the ${\beta}-glucans$ was soluble and in pearled barley 46%. Whole oats contained $3.1{\sim}4.0%$ total ${\beta}-glucans$, and dehulling increased the groat ${\beta}-glucans$ contents to $4.0{\sim}4.8%$. Oats demonstrated considerably higher ${\beta}-glucans$ solubility of 84% than barley. ${\beta}-Glucans$ in barley and oats were rapidly extracted at the beginning of the extraction and almost all of the ${\beta}-glucans$ were extracted after $2{\sim}3 hr extraction. As extraction temperature increased from $23^{\circ}C$ to $45^{\circ}C$, more soluble ${\beta}-glucans$ were extracted. However, solubility of barley ${\beta}-glucans$ decreased at a relatively high temperature of $65^{\circ}C$. Steam-cooking reduced the analytical solubility of barley and oat ${\beta}-glucans$, while roasting seemed to render the ${\beta}-glucans$ of barley more soluble.

  • PDF

Physicochemical Characteristics and Physiological Functions of ${\beta}-Glucans$ in Barley and Oats (보리, 귀리 ${\beta}-Glucan$의 이화학적 특성과 생리적 기능)

  • Lee, Young-Tack
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.41 no.spc1
    • /
    • pp.10-24
    • /
    • 1996
  • [ ($1{\to}3$) ], ($1{\to}4$)-${\beta}$-D-glucans(${\beta}-glucans$) are a major component of the cell walls of grasses as a component of the cereal endosperm and aleurone cell walls. Although ${\beta}-glucans$ exist in all cereals, their concentration is highest in oats and barley. Genetic and environmental differences are found in total ${\beta}-glucan$ content. Both oats and barley ${\beta}-glucans$ have cholesterol-lowering effects. This suggests possible use as food additives. Structural characterization of ${\beta}-glucan$ is important because structure can influence physical and physiological properties. In this review, ${\beta}-glucans$ of barley and oats are discussed in details including structure, chemical and physical properties, and nutritional implications. The use of barley and oat products as well as ${\beta}-glucan$ as a food additive continues to increase. This can provide an additional market for barley and oats, thus increasing the value of the crops.

  • PDF

Water-solubility of β-Glucans in Various Edible Mushrooms - Research Note -

  • Lee, Young-Tack;Kim, Young-Soo
    • Preventive Nutrition and Food Science
    • /
    • v.10 no.3
    • /
    • pp.294-297
    • /
    • 2005
  • The amount of $\beta-glucans$ in 12 edible mushroom species was determined and their water-solubility was assessed. A large variability in $\beta-glucans$ content was observed in the mushroom species, ranging from 4.71 to $46.20\%$ on a dry basis. Gyrophora esculenta, Lentinus edodes, Coriolus versicolor, Ganodenna lucidum, and Flammulina velutipes had high levels of $\beta-glucans$ Soluble $\beta-glucans$ content, which plays a key role in the physiological effects of mushrooms, also varied greatly according to the mushroom species, ranging from 2.12 to $19.66\%$. Water-solubility of $\beta-glucans$ in the edible mushrooms, as a percentage of total $\beta-glucans$ content varied from 42.55 to $73.35\%$.

In Vitro Antioxidant Activity Profiles of ${\beta}$-Glucans Isolated from Yeast Saccharomyces cerevisiae and Mutant Saccharomyces cerevisiae IS2

  • Song, Hee-Sun;Moon, Ki-Young
    • Food Science and Biotechnology
    • /
    • v.15 no.3
    • /
    • pp.437-440
    • /
    • 2006
  • To explore the possible usefulness of ${\beta}$-glucans as natural antioxidants, the antioxidant profiles of ${\beta}$-glucan, extracted from Saccharomyces cerevisiae KCTC 7911, and water soluble and insoluble mutant ${\beta}$-glucan, isolated from yeast mutant S. cerevisiae IS2, were examined by five different in vitro evaluation methods: lipid peroxidation value (POV), nitric oxide (NO), 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical, reducing power, and ${\beta}$-carotene diffusion assay. The antioxidant activities of all ${\beta}$-glucans evaluated in POV test were comparable to or better than that of the known antioxidant, vitamin C. Remarkably, the ${\beta}$-glucan and water insoluble mutant ${\beta}$-glucan possessed 2.5-fold more potent activity than vitamin C at a dosage of 2 mg. Although vitamin C showed 100-fold greater activity than all ${\beta}$-glucans in NO and DPPH tests for measuring the radical scavenging capacity, all ${\beta}$-glucans revealed higher radical scavenging activity than the known radical scavenger, N-acetyl-L-cysteine (NAC), in DPPH test. The water insoluble mutant ${\beta}$-glucan had 2.6- and 5-fold greater antioxidative activity than water soluble ${\beta}$-glucan in NO and DPPH tests, respectively, showing that all ${\beta}$-glucans were able to scavenge radicals such as NO or DPPH. While all ${\beta}$-glucans revealed lower antioxidant profiles than vitamin C in both reducing power activity and ${\beta}$-carotene agar diffusion assay, the ${\beta}$-glucan and water insoluble mutant ${\beta}$-glucan did show a marginal reducing power activity as well as a considerable ${\beta}$-carotene agar diffusion activity. These results confirmed the potential usefulness of these ${\beta}$-glucans as natural antioxidants.

Stimulatory Effect of ${\beta}$-glucans on Immune Cells

  • Kim, Hyung-Sook;Hong, Jin-Tae;Kim, Young-Soo;Han, Sang-Bae
    • IMMUNE NETWORK
    • /
    • v.11 no.4
    • /
    • pp.191-195
    • /
    • 2011
  • ${\beta}$-Glucans are naturally occurring polysaccharides that are produced by bacteria, yeast, fungi, and many plants. Although their pharmacological activities, such as immunomodulatory, anti-infective and anti-cancer effects, have been well studied, it is still unclear how ${\beta}$-glucans exert their activities. However, recent studies on the ${\beta}$-glucans receptors shed some light on their mechanism of action. Since ${\beta}$-glucans have large molecular weights, they must bind surface receptors to activate immune cells. In this review, we summarize the immunopharmacological activities and the potential receptors of ${\beta}$-glucans in immune cells.

Linkage Structure Analysis of Barley and Oat $\beta$-Glucans by High Performance Anion Exchange Chromatography

  • Ryu, Je-Hoon;Yoo, Dong-Hyung;Lee, Byung-Hoo;Lee, Su-Yong;Joo, Mi-Hyun;Yoo, Sang-Ho
    • Food Science and Biotechnology
    • /
    • v.18 no.1
    • /
    • pp.271-274
    • /
    • 2009
  • Cereal $\beta$-glucans, linked essentially by mixed $\beta$-(1,4/1,3) glycosidic bonds, were extracted, purified, and structurally identified. Previously chemical structure of barley $\beta$-glucans was characterized from 3 varieties of 'Gang', 'Ohl', and 'Gwangan', and the (1,4)/(1,3) linkage ratio of the $\beta$-glucans was identical. In this study, $\beta$-glucans from 1 barley ('Chal') and 3 oat ('Ohl', 'Samhan', and 'Donghan') varieties were structurally scrutinized, and the linkage pattern of total 7 cereal $\beta$-glucans was compared. The amount of 2 major 3-O-$\beta$-cellobiosyl-D-glucose (DP3) and 3-O-$\beta$-cellotriosyl-D-glucose (DP4) from barley and oat accounted for only 66.6-73.3 and 68.12-81.89% of water-extractable $\beta$-glucan fractions, and the (1,4)/(1,3) linkage ratios of both barley and oat $\beta$-glucans were within very narrow range of 2.27-2.31 and 2.38-2.39, respectively, among the cultivars tested. Structural difference in the cereal $\beta$-glucans was evident when DP3:DP4 ratio in the $\beta$-glucan structure was compared. As a result, this ratio was significantly greater for barley $\beta$-glucan (2.26-2.74) than for oat (1.54-1.66). Chal-B had the greatest DP3 to DP4 ratio among the samples, which in turn reflected the least amount of (1,4)-linkages.

Phagocytic Effects of β-Glucans from the Mushroom Coriolus versicolor are Related to Dectin-1, NOS, TNF-α Signaling in Macrophages

  • Jang, Seon-A;Kang, Se-Chan;Sohn, Eun-Hwa
    • Biomolecules & Therapeutics
    • /
    • v.19 no.4
    • /
    • pp.438-444
    • /
    • 2011
  • The mushroom Coriolus versicolor contains biologically active polysaccharides, most of which belong to the ${\beta}$-glucan group. Diverse physicochemical properties, due to different sources and isolated types of ${\beta}$-glucans, can induce distinct biological activities. We investigated the effects of ${\beta}$-glucans from C. versicolor on phagocytic activity, nitric oxide (NO), TNF-${\alpha}$ production, and signaling of dectin-1, a well-known ${\beta}$-glucan receptor, in macrophages. ${\beta}$-Glucans increased phagocytic activity and TNF-${\alpha}$ and NO-iNOS/eNOS production. Laminarin, a specific inhibitor of dectin-1, showed strong inhibitory effects on phagocytosis and subsequent TNF-${\alpha}$, iNOS, and eNOS production increased by ${\beta}$-glucans, indicating that ${\beta}$-glucans reacts with dectin-1 receptors. We examined whether the aforementioned cytokines were involved in the signaling pathway from the dectin-1 receptor to phagocytosis, and found that the inhibition of iNOS, eNOS, and TNF-${\alpha}$ receptors significantly decreased ${\beta}$-glucan-induced phagocytosis. In conclusion, our study showed that dectin-1 signaling, triggered by ${\beta}$-glucans, subsequently elicited TNF-${\alpha}$ and NO-iNOS/eNOS production, and that these molecules seem to act as secondary molecules that cause eventual phagocytosis by macrophages. These findings suggest that C. versicolor could be used as a nutritional medicine that may be useful in the treatment of infectious disease.

Immunomodulating Activity of Fungal ${\beta}-Glucan$ through Dectin-1 and Toll-like Receptor on Murine Macrophage

  • Kim, Ha-Won
    • 한국약용작물학회:학술대회논문집
    • /
    • 2006.11a
    • /
    • pp.103-115
    • /
    • 2006
  • [ ${\beta}-Glucan$ ] is a glucose polymer that has linkage of ${\beta}-(1,3)$, -(1,4) and -(1,6). As exclusively found in fungal and bacterial cell wall, not in animal, ${\beta}-glucans$ are recognized by innate immune system. Dendritic cells (DC) or macrophages possesses pattern recognition molecule (PRM) for binding ${\beta}-glucans$ as pathogen-associated molecular pattern (PAMP). Recently ${\beta}-glucans$ receptor was cloned from DC and named as dectin-l which belongs to type II C-type lectin family. Human dectin-l is consisted of 7 exons and 6 introns. The polypeptide of dectin-l has 247 amino acids and has cytoplasmic, transmembrane, stalk and carbohydrate recognition domains. Dectin-l could recognize variety of beta-l,3 and/or beta-l,6 glucan linkages, but not alpha-glucans. In our macrophage cell line culture system, dectin-l mRNA was detected in RA W264.7 cells by reverse transcription-polymerase chain reaction (RT-PCR). Dectin-l was also detected in the murine organs of spleen, thymus, lung and intestines. Treatment of RA W264.7 cells with ${\beta}-glucans$ of Ganoderma lucidum (GLG) resulted in increased expression of IL-6 and $TNF-{\alpha}$ in the presence of LPS. However, GLG alone did not increase IL-6 nor $TNF-{\alpha}$ These results suggest that receptor dectin-l cooperate with CD14 to activate signal transduction that is very critical in immunoresponse.

  • PDF

Potentiation of Innate Immunity by β-Glucans

  • Seong, Su-Kyoung;Kim, Ha-Won
    • Mycobiology
    • /
    • v.38 no.2
    • /
    • pp.144-148
    • /
    • 2010
  • $\beta$-Glucans have been known to exhibit antitumor activities by potentiating host immunity by an unknown mechanism. The C-type lectin dectin-1, a $\beta$-glucan receptor, is found on the macrophage and can recognize various $\beta$-glucans. Previously, we demonstrated the presence of $\beta$-glucan receptor, dectin-1, on the Raw 264.7 cells as well as on murine mucosal organs, such as the thymus, the lung, and the spleen. In order to investigate immunopotentiation of innate immunity by $\beta$-glucan, we stimulated a murine macrophage Raw 264.7 cell line with $\beta$-glucans from Pleurotus ostreatus, Saccharomyces cerevisiae, and Laminaria digitata. Then, we analyzed cytokines such as tumor necrosis factor (TNF)-$\alpha$ and interleukin (IL)-6 by reverse transcription-polymerase chain reaction (RT-PCR). In addition we analyzed gene expression patterns in $\beta$-glucan-treated Raw 264.7 cells by applying total mRNA to cDNA microarray to investigate the expression of 7,000 known genes. When stimulated with $\beta$-glucans, the macrophage cells increased TNF-$\alpha$ expression. When co-stimulation of the cells with $\beta$-glucan and lipopolysaccharide (LPS), a synergy effect was observed by increased TNF-$\alpha$ expression. In IL-6 expression, any of the $\beta$-glucans tested could not induce IL-6 expression by itself. However, when co-stimulation occurred with $\beta$-glucan and LPS, the cells showed strong synergistic effects by increased IL-6 expression. Chip analysis showed that $\beta$-glucan of P. ostreatus increased gene expressions of immunomodulating gene families such as kinases, lectin associated genes and TNF-related genes in the macrophage cell line. Induction of TNF receptor expression by FACS analysis was synergized only when co-stimulated with $\beta$-glucan and LPS, not with $\beta$-glucan alone. From these data, $\beta$-glucan increased expressions of immunomodulating genes and showed synergistic effect with LPS.

The Comparative Immunomodulatory Effects of β-Glucans from Yeast, Bacteria, and Mushroom on the Function of Macrophages

  • Jang, Seon-A;Park, Sul-Kyoung;Lim, Jung-Dae;Kang, Se-Chan;Yang, Kwang-Hee;Pyo, Suh-Kneung;Sohn, Eun-Hwa
    • Preventive Nutrition and Food Science
    • /
    • v.14 no.2
    • /
    • pp.102-108
    • /
    • 2009
  • The comparative immunomodulatory effects of ${\beta}$-glucans isolated from mushroom fungi (Coriolus versicol), yeast (Saccharomyces cerevisiae) and bacteria (Agrobacterium) on the major functions of macrophages were evaluated. As parameters of macrophage functions, we examined tumoricidal activity, phagocytosis, nitric oxide (NO) production, and the induction of inducible NO synthetase (iNOS) in RAW264.7 cells, following treatments with ${\beta}$-glucans from the three different sources. The results indicated that all ${\beta}$-glucan treatments significantly induced tumoricidal activity in the RAW264.7 cells, with a remarkable effect shown by the beta-glucan from Agrobacterium at a concentration of $10{\mu}g/mL$. There was also a significant increase in iNOS-NO system activity in macrophages treated with ${\beta}$-glucans extracted from yeast; however, iNOS-NO system activity was not markedly changed by the treatment of ${\beta}$-glucans from C. versicolor mushroom fungi or Agrobacterium. Furthermore, the ${\beta}$-glucans from C. versicolor had a significant phagocytotic effect at concentrations of 1, 10, and $100{\mu}g/mL$. Taken together, the present data suggest that these ${\beta}$-glucans, isolated from three different sources, have different effects on macrophage function, and therefore, may have different clinical uses in different for various types of diseases.