• Title/Summary/Keyword: Best-worst method

Search Result 107, Processing Time 0.026 seconds

Quantum-based exact pattern matching algorithms for biological sequences

  • Soni, Kapil Kumar;Rasool, Akhtar
    • ETRI Journal
    • /
    • v.43 no.3
    • /
    • pp.483-510
    • /
    • 2021
  • In computational biology, desired patterns are searched in large text databases, and an exact match is preferable. Classical benchmark algorithms obtain competent solutions for pattern matching in O (N) time, whereas quantum algorithm design is based on Grover's method, which completes the search in $O(\sqrt{N})$ time. This paper briefly explains existing quantum algorithms and defines their processing limitations. Our initial work overcomes existing algorithmic constraints by proposing the quantum-based combined exact (QBCE) algorithm for the pattern-matching problem to process exact patterns. Next, quantum random access memory (QRAM) processing is discussed, and based on it, we propose the QRAM processing-based exact (QPBE) pattern-matching algorithm. We show that to find all t occurrences of a pattern, the best case time complexities of the QBCE and QPBE algorithms are $O(\sqrt{t})$ and $O(\sqrt{N})$, and the exceptional worst case is bounded by O (t) and O (N). Thus, the proposed quantum algorithms achieve computational speedup. Our work is proved mathematically and validated with simulation, and complexity analysis demonstrates that our quantum algorithms are better than existing pattern-matching methods.

Use of multi-hybrid machine learning and deep artificial intelligence in the prediction of compressive strength of concrete containing admixtures

  • Jian, Guo;Wen, Sun;Wei, Li
    • Advances in concrete construction
    • /
    • v.13 no.1
    • /
    • pp.11-23
    • /
    • 2022
  • Conventional concrete needs some improvement in the mechanical properties, which can be obtained by different admixtures. However, making concrete samples costume always time and money. In this paper, different types of hybrid algorithms are applied to develop predictive models for forecasting compressive strength (CS) of concretes containing metakaolin (MK) and fly ash (FA). In this regard, three different algorithms have been used, namely multilayer perceptron (MLP), radial basis function (RBF), and support vector machine (SVR), to predict CS of concretes by considering most influencers input variables. These algorithms integrated with the grey wolf optimization (GWO) algorithm to increase the model's accuracy in predicting (GWMLP, GWRBF, and GWSVR). The proposed MLP models were implemented and evaluated in three different layers, wherein each layer, GWO, fitted the best neuron number of the hidden layer. Correspondingly, the key parameters of the SVR model are identified using the GWO method. Also, the optimization algorithm determines the hidden neurons' number and the spread value to set the RBF structure. The results show that the developed models all provide accurate predictions of the CS of concrete incorporating MK and FA with R2 larger than 0.9972 and 0.9976 in the learning and testing stage, respectively. Regarding GWMLP models, the GWMLP1 model outperforms other GWMLP networks. All in all, GWSVR has the worst performance with the lowest indices, while the highest score belongs to GWRBF.

Frequency analysis of liquid sloshing in prolate spheroidal containers and comparison with aerospace spherical and cylindrical tanks

  • Mohammad Mahdi Mohammadi;Hojat Taei;Hamid Moosazadeh;Mohammad Sadeghi
    • Advances in aircraft and spacecraft science
    • /
    • v.10 no.5
    • /
    • pp.439-455
    • /
    • 2023
  • Free surface fluid oscillation in prolate spheroidal tanks has been investigated analytically in this study. This paper aims is to investigate the sloshing frequencies in spheroidal prolate tanks and compare them with conventional cylindrical and spherical containers to select the best tank geometry for use in space launch vehicles in which the volume of fuel is very high. Based on this, the analytical method (Fourier series expansion) and potential fluid theory in the spheroidal coordinate system are used to extract and analyze the governing differential equations of motion. Then, according to different aspect ratios and other parameters such as filling levels, the fluid sloshing frequencies in the spheroidal prolate tank are determined and evaluated based on various parameters. The natural frequencies obtained for a particular tank are compared with other literature and show a good agreement with these results. In addition, spheroidal prolate tank frequencies have been compared with sloshing frequencies in cylindrical and spherical containers in different modes. Results show that when the prolate spheroidal tank is nearly full and in the worst case when the tank is half full and the free fluid surface is the highest, the prolate spheroidal natural frequencies are higher than of spherical and cylindrical tanks. Therefore, the use of spheroidal tanks in heavy space launch vehicles, in addition to the optimal use of placement space, significantly reduces the destructive effects of sloshing.

Comparison Analysis of Building's Heating Energy Consumption in the Apartment Complex - Focused on Apartment in Daejeon - (공동주택 단지 내 동별 난방에너지소요량 비교 분석 - 대전지역 아파트단지를 중심으로 -)

  • Jang, Young-Hye;Kim, Jeong-Gook;Kim, Jonghun;Jeong, Hakgeun;Hong, Won-Hwa;Jang, Cheol-Yong
    • KIEAE Journal
    • /
    • v.15 no.3
    • /
    • pp.37-42
    • /
    • 2015
  • Purpose: Apartment is a typical residential type in Korea. In the past, apartment types were very monotonous. But today, the types of complex are changed because personal needs have been diversified and personalized. In order to meet those needs, construction companies are constructing various types of apartments. The more apartment types are diverse, the more the energy problems are taken place. So, the purpose of this study is to solve the problem of energy gap in the same complex through improving the thermal transmittance of wall. Method: Heating energy consumption of Building Energy Efficiency Rating System and heating energy usage of apartment show a similar trend on the graph. In order to identify the best position of heating energy consumption difference reduction, we change the building's U-value of front, back, side walls. Result: In the A complex, maximum and minimum heating energy consumption building's shapes are flat. the best efficiency is side U-value change and the worst is front change. In the E complex, maximum heating energy consumption building's shape is tower and minimum building shape is flat. Consequently, the front and back wall performance change was little effect to reduce energy gap, while the change of side wall's U-value show the great reduction between building's energy consumptions.

A SCANNING ELECTRON MICROSCOPIC STUDY ON THE ADAPTATION OF ROOT CANAL FILLING MATERIAL TO ROOT CANAL WALL WITH AND WITHOUT SMEAR LAYER (Gutta percha 충전시 도말층 유무에 따른 근관벽과의 접합도에 관한 주사전자현미경적 연구)

  • Moon, Joo-Hoon;Cho, Young-Gon
    • Restorative Dentistry and Endodontics
    • /
    • v.17 no.2
    • /
    • pp.365-382
    • /
    • 1992
  • The purpose of this study was to evaluate the adaptation of filling material to the dentinal walls of root canals with and without smear layer. Fifty extracted upper and lower anterior teeth were selected, and the root canals were instrumented with K - files 1mm short of the apical foramen by step - back method. The teeth were randomly divided into two groups of 25 each : in the group I, smear layers were not removed, and in the group II, smear layers were removed by 15% EDTA solution. Again the two groups 25 teeth were randomly divided into unfilled contol group and filling groups(lateral, ultrasonic, ULTRAFIL, McSpadden compaction group). Upon completion of root canal filling, the teeth were grooved on the both the labial and lingual surfaces and then split with mallet and chisel. Each specimens were examined with JSM - 840 Scanning Electron Microscope (JEOL., Japan). The results were as follows : 1. In the contol group, dentinal tubules of group I couldn't be distinguished in the canal wall, but those of group II appeared to be open and patent. 2. In the filling groups of group I, the tubular penetration of the sealer or gutta percha couldn't be seen, but in the filling groups of group II, it could be seen except McSpadden compaction group. 3. In the filling groups, ULTRAFIL group showed the best adaptation of filling material to root canal wall among the group I, and lateral and ultrasonic condensation group showed the best adaptation of filling material among the group II. McSpadden compaction group showed the worst adaptation in group I, II. 4. Generally, the group II showed better adapation of filling material to root canal wall than the group I.

  • PDF

Multivariable Integrated Evaluation of GloSea5 Ocean Hindcasting

  • Lee, Hyomee;Moon, Byung-Kwon;Kim, Han-Kyoung;Wie, Jieun;Park, Hyo Jin;Chang, Pil-Hun;Lee, Johan;Kim, Yoonjae
    • Journal of the Korean earth science society
    • /
    • v.42 no.6
    • /
    • pp.605-622
    • /
    • 2021
  • Seasonal forecasting has numerous socioeconomic benefits because it can be used for disaster mitigation. Therefore, it is necessary to diagnose and improve the seasonal forecast model. Moreover, the model performance is partly related to the ocean model. This study evaluated the hindcast performance in the upper ocean of the Global Seasonal Forecasting System version 5-Global Couple Configuration 2 (GloSea5-GC2) using a multivariable integrated evaluation method. The normalized potential temperature, salinity, zonal and meridional currents, and sea surface height anomalies were evaluated. Model performance was affected by the target month and was found to be better in the Pacific than in the Atlantic. An increase in lead time led to a decrease in overall model performance, along with decreases in interannual variability, pattern similarity, and root mean square vector deviation. Improving the performance for ocean currents is a more critical than enhancing the performance for other evaluated variables. The tropical Pacific showed the best accuracy in the surface layer, but a spring predictability barrier was present. At the depth of 301 m, the north Pacific and tropical Atlantic exhibited the best and worst accuracies, respectively. These findings provide fundamental evidence for the ocean forecasting performance of GloSea5.

Comparative Analysis of Protocol Test Sequence Generation Methods for Conformance Testing (적합성시험을 위한 프로토콜 시험항목 생성방법의 비교분석)

  • Kim, Chul
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.10 no.4
    • /
    • pp.325-332
    • /
    • 2017
  • In this paper, a survey of test sequence generation methods for testing the conformance of a protocol implementation to its specification is presented. The best known methods proposed in the literature are called transition tour, distinguishing sequence, characterizing sequence, and unique input/output sequence. Also, several variants of the above methods are introduced. Applications of these methods to the finite state machine model are discussed. Then, comparative analysis of the methods is made in terms of test sequence length. Finally, conclusions are given as follows. The T-method produces the shortest test sequence, but it has the worst fault coverage. The W-method tends to produce excessively long test sequences even though its fault coverage is complete. The problem with the DS-method is that a distinguishing sequence may not exist. The UIO-method is more widely applicable, but it does not provide the same fault coverage as the DS-method.

Comparison of Different Methods to Merge IRS-1C PAN and Landsat TM Data (IRS-1C PAN 데이터와 Landsat TM 데이터의 종합방법 비교분석)

  • 안기원;서두천
    • Korean Journal of Remote Sensing
    • /
    • v.14 no.2
    • /
    • pp.149-164
    • /
    • 1998
  • The main object of this study was to prove the effectiveness of different merging methods by using the high resolution IRS(Indian Remote Sensing Satellite)-1C panchromatic data and the multispectral Landsat TM data. The five methods used to merging the information contents of each of the satellite data were the intensity-hue-saturation(IHS), principal component analysis(PCA), high pass filter(HPF), ratio enhancement method and look-up-table(LUT) procedures. Two measures are used to evaluate the merging method. These measures include visual inspection and comparisons of the mean, standard deviation and root mean square error between merged image and original image data values of each band. The ratio enhancement method was well preserved the spectral characteristics of the data. From visual inspection, PCA method provide the best result, HPF next, ratio enhancement, IHS and LUT method the worst for the preservation of spatial resolution.

Applicability of A Stream Evaluation Method for Stream Restoration (하천복원을 위한 하천평가기법의 적용성 연구)

  • Lee, Joon-Ho;Kang, Tae-Ho;Sung, Young-Du;Yoon, Sei-Eei
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.3 no.4 s.11
    • /
    • pp.131-143
    • /
    • 2003
  • The purpose of this study was to develop a new method for evaluation of stream naturalness in order to promote stream managers' understanding on importance of improving stream naturalness, and in order to appraise and prescribe for streams effectively in the process of ecological restoration of stream corridors. In order to analyze the evaluation method of stream naturalness and its applicability to streams, stream naturalness index(SNI) which has seven factors such as channel development, longitudinal profile, lateral section, stream bed structure, low flow channel structure, stream surroundings and water quality was suggested in this paper. For case studies, Bokha stream was selected for the evaluation of stream naturalness. At the Bokha stream, the scores of SNI factors were in range of $2.2{\sim}3.8$, and the average of SNI was 3.1, and the most frequent grade of SNI factors was grade 3. Among the 7 factors, the best was lateral section, and the worst was channel development. In this study, SNI grade can represent the characteristics of stream naturalness well and select the streams which will be restored, and can also decide the segment and the method of restoration for deteriorated streams.

A Method of Embedded Linux Light-Weight for Efficient Application Execution (어플리케이션 처리속도 개선을 위한 임베디드 리눅스 경량화 기법)

  • Lee, Tae-Woo;Cho, Ji-Yong;Cho, Yong-Hwan
    • Journal of the Korea Society of Computer and Information
    • /
    • v.18 no.3
    • /
    • pp.1-10
    • /
    • 2013
  • In this paper, we propose a method of embedded linux light-weight to improve efficiency of application running on embedded systems. Three methods including fast booting scheme applying the Hibernation technique, JFFS2 file system optimization applying the Symbolic Link and virtual address mapping, kernel light-weight that guarantees the general purpose was applied. Since then check the system dependency and generate kernel image according to the target embedded kit. And embedded system performance of existing linux and linux which the method proposed in this paper was compared. In experimental result, the kernel size was 9.6% improved and the system booting time was 18% improved. And application processing speed on target embedded kit was improved 11% in the best case, 66% in the worst case. This result show that the light-weight method proposed in this paper is guarantee fast booting time and securing resources and it is good for the application processing speed improvement.