Browse > Article
http://dx.doi.org/10.5467/JKESS.2021.42.6.605

Multivariable Integrated Evaluation of GloSea5 Ocean Hindcasting  

Lee, Hyomee (Division of Science Education & Institute of Fusion Science, Jeonbuk National University)
Moon, Byung-Kwon (Division of Science Education & Institute of Fusion Science, Jeonbuk National University)
Kim, Han-Kyoung (Division of Science Education & Institute of Fusion Science, Jeonbuk National University)
Wie, Jieun (Division of Science Education & Institute of Fusion Science, Jeonbuk National University)
Park, Hyo Jin (Jeonju Jungang Middle School)
Chang, Pil-Hun (Operational Systems Development Department, National Institute of Meteorological Sciences)
Lee, Johan (Operational Systems Development Department, National Institute of Meteorological Sciences)
Kim, Yoonjae (Korean National Meteorological Satellite Center)
Publication Information
Journal of the Korean earth science society / v.42, no.6, 2021 , pp. 605-622 More about this Journal
Abstract
Seasonal forecasting has numerous socioeconomic benefits because it can be used for disaster mitigation. Therefore, it is necessary to diagnose and improve the seasonal forecast model. Moreover, the model performance is partly related to the ocean model. This study evaluated the hindcast performance in the upper ocean of the Global Seasonal Forecasting System version 5-Global Couple Configuration 2 (GloSea5-GC2) using a multivariable integrated evaluation method. The normalized potential temperature, salinity, zonal and meridional currents, and sea surface height anomalies were evaluated. Model performance was affected by the target month and was found to be better in the Pacific than in the Atlantic. An increase in lead time led to a decrease in overall model performance, along with decreases in interannual variability, pattern similarity, and root mean square vector deviation. Improving the performance for ocean currents is a more critical than enhancing the performance for other evaluated variables. The tropical Pacific showed the best accuracy in the surface layer, but a spring predictability barrier was present. At the depth of 301 m, the north Pacific and tropical Atlantic exhibited the best and worst accuracies, respectively. These findings provide fundamental evidence for the ocean forecasting performance of GloSea5.
Keywords
GloSea5; ocean forecast; seasonal forecasting; hindcast; multivariable integrated evaluation;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Duan, W. and Wei, C., 2012, The 'spring predictability barrier' for ENSO predictions and its possible mechanism: Results from a fully coupled model. International Journal of Climatology, 33(5), 1280-1292, https://doi.org/10.1002/joc.3513.   DOI
2 Fu, Y., Lu, R., Wang, H., and Yang, X., 2013, Impact of overestimated ENSO variability in the relationship between ENSO and East Asian summer rainfall. Journal of Geophysical Research: Atmospheres, 118, 6200-6211, https://doi.org/10.1002/jgrd.50482.   DOI
3 Ham, H., Lee, S.-M., Hyun, Y.-K., and Kim, Y., 2019, Assessment of monthly ensemble prediction data based on improvement of climate prediction system at KMA. Atmosphere, 29(2), 149-164, https://doi.org/10.14191/Atmos.2019.29.2.149.   DOI
4 Haustein, K., Otto, F. E. L., Uhe, P., Schaller, N., Allen, M. R., Hermanson, L., Christidis, N., McLean, P., and Cullen, H., 2016, Real-time extreme weather event attribution with forecast seasonal SSTs. Environmental Research Letters, 11(6), 064006, https://doi.org/10.1088/1748-9326/11/6/064006.   DOI
5 Larson, S. M. and Kirtman, B. P., 2017, Drivers of coupled model ENSO error dynamics and the spring predictability barrier. Climate Dynamics, 48, 3631-3644, https://doi.org/10.1007/s00382-016-3290-5.   DOI
6 Song, K., Kim, H., Son, S.-W., Kim, S.-W., Kang, H.-S., and Hyun, Y.-K., 2018, Subseasonal-to-seasonal (S2S) Prediction of GloSea5 Model: Part 2. Stratospheric sudden warming. Atmosphere, 28(2), 123-139, https://doi.org/10.14191/Atmos.2018.28.2.123.   DOI
7 Lima, L. N., Pezzi, L. P., Penny, S. G., and Tanajura, C. A. S., 2019, An investigation of ocean model uncertainties through ensemble forecast experiments in the Southwest Atlantic Ocean. Journal of Geophysical Research: Oceans, 124(1), 432-452.   DOI
8 Lee, S.-M., Lee, J., Ko, A.-R., Hyun, Y.-K., and Kim, Y., 2020a, Seasonal forecasting of tropical storms using GloSea5 hindcast. Atmosphere, 30(3), 209-220, https://doi.org/10.14191/ATMOS.2020.30.3.209.   DOI
9 Lee, T., Speich, S., Lorenzoni, L., Chiba, S., Muller-Karger, F. E., Dai, M,, Kabo-Bah, A. T., Siddorn, J., Manley, J., Snoussi, M., amd Chai, F., eds., 2020b, Oceanobs' 19: An Ocean of Opportunity. Volume I. Lausanne: Frontiers Media SA, 783 p, https://doi.org/10.3389/978-2-88963-118-6.   DOI
10 Siedlecki, S. A., Kaplan, I. C., Hermann, A. J., Nguyen, T. T., Bond, N. A., Newton, J. A., Williams, G. D., Peterson, W. T., Alin, S. R., and Feely, R. A., 2016, Experiments with Seasonal Forecasts of ocean conditions for the Northern region of the California Current upwelling system. Scientific Reports, 6(1), 27203, https://doi.org/10.1038/srep27203.   DOI
11 Williams, K. D., Harris, C. M., Bodas-Salcedo, A., Camp, J., Comer, R. E., Copsey, D., Fereday, D., Graham, T., Hill, R., Hinton, T., Hyder, P., Ineson, S., Masato, G., Milton, S. F., Roberts, M. J., Rowell, D. P., Sanchez, C., Shelly, A., Sinha, B., Walters, D. N., West, A., Woollings, T., and Xavier, P. K., 2015, The Met Office Global Coupled model 2.0 (GC2) configuration. Geoscientific Model Development, 8, 1509-1524, https://doi.org/10.5194/gmd-8-1509-2015.   DOI
12 Bonjean, F. and Lagerloef, G. S. E., 2002, Diagnostic model and analysis of the surface currents in the tropical Pacific Ocean. Journal of Physical Oceanography, 32, 2938-2954.   DOI
13 Carton, J.A., Chepurin, G.A., and Chen, L., 2018, SODA3: A new ocean climate reanalysis. Journal of Climate, 31(17), 6967-6983, https://doi.org/10.1175/JCLI-D-18-0149.1.   DOI
14 Subramanian, A. C., Balmaseda, M. A., Centurioni, L., Chattopadhyay, R., Cornuelle, B. D., DeMott, C., Flatau, M., Fujii, Y., Giglio, D., Gille, S. T., Hamill, T. M., Hendon, H., Hoteit, I., Kumar, A., Lee, J.-H., Lucas, A.-J., Mahadevan, A., Matsueda, M., Nam, S., Paturi1, S., Penny, S. G., Rydbeck, A., Sun, R., Takaya, Y., Tandon, A., Todd, R. E., Vitart, F., Yuan, D., and Zhang, C., 2019, Ocean observations to improve our understanding, modeling, and forecasting of subseasonalto-seasonal variability. Frontiers in Marine Science, 6, 427, https://doi.org/10.3389/fmars.2019.00427.   DOI
15 Xu, Z., Hou, Z., Han, Y., and Guo, W., 2016, A diagram for evaluating multiple aspects of model performance in simulating vector fields. Geoscientific Model Development, 9, 4365-4380, https://doi.org/10.5194/gmd-9-4365-2016.   DOI
16 Madec, G, Romain, B.-B., Pierre-Antoine, B., Clement, B., Diego, B., Daley, C., Jerome, C., Emanuela, C., Andrew, C., Damiano, D., Christian, E., Simona, F., Tim, G., James, H., Doroteaciro, I., Dan, L., Claire, L., Tomas, L., Nicolas, M., Sebastien, M., Silvia, M., Julien, P., Clement, R., Dave, S., Andrea, S., and Martin, V., 2016, NEMO ocean engine. Notes du Pole de modelisation, l'Institut Pierre-Simon Laplace (IPSL), v3.6-patch Number 27, 412 p. https://doi.org/10.5281/zenodo.3248739 (August 24th 2021)   DOI
17 Walters, D. N., Best, M. J., Bushell, A. C., Copsey, D., Edwards, J. M., Falloon, P. D., Harris, C. M., Lock, A. P., Manners, J. C., Morcrette, C. J., Roberts, M. J., Stratton, R. A., Webster, S., Wilkinson, J. M., Willett, M. R., Boutle, I. A., Earnshaw, P. D., Hill, P. G., MacLachlan, C., Martin, G. M., Moufouma-Okia, W., Palmer, M. D., Petch, J. C., Rooney, G. G., Scaife, A. A., and Williams, K. D., 2011, The Met Office Unified Model Global Atmosphere 3.0/3.1 and JULES Global Land 3.0/3.1 configurations. Geoscientific Model Development, 4, 919-941, https://doi.org/10.5194/gmd-4-919-2011.   DOI
18 APEC Climate Center, 2021, SST Outlook. https://apcc21.org/ser/enso.do?lang=en (February 16th 2021)
19 Barnston, A.G. and Tippett, M.K., 2013, Predictions of Nino3.4 SST in CFSv1 and CFSv2: a diagnostic comparison. Climate Dynamics, 41, 1615-1633, https://doi.org/10.1007/s00382-013-1845-2.   DOI
20 Blockley, E. W., Martin, M. J., and Hyder, P., 2012, Validation of FOAM near-surface ocean current forecasts using Lagrangian drifting buoys. Ocean Science, 8(4), 551-565, https://doi.org/10.5194/os-8-551-2012.   DOI
21 Brown, A., Milton, S., Cullen, M., Golding, B., Mitchell, J., and Shelly, A., 2012, Unified modeling and prediction of weather and climate: A 25-year journey. Bulletin of the American Meteorological Society, 93, 1865-1877, https://doi.org/10.1175/BAMS-D-12-00018.1.   DOI
22 Smith, D.M., Scaife, A.A., Eade, R., and Knight, J. R., 2016, Seasonal to decadal prediction of the winter North Atlantic Oscillation: Emerging capability and future prospects. Quarterly Journal of the Royal Meteorological Society, 142(695), 611-617, https://doi.org/10.1002/qj.2479.   DOI
23 Meehl, G. A., Goddard, L., Boer, G., Burgman, R., Branstator, G., Cassou, C., Corti, S., Danabasoglu, G., Doblas-Reyes, F., Hawkins, E., Karspeck, A., Kimoto, M., Kumar, A., Matei, D., Mignot, J., Msadek, R., Navarra, A., Pohlmann, H., Rienecker, M., Rosati, T., Schneider, E., Smith, D., Sutton, R., Teng, H., van Oldenborgh, G. J., Vecchi, G., and Yeager, S., 2014, Decadal climate prediction: An update from the trenches. Bulletin of the American Meteorological Society, 95(2), 243-267, https://doi.org/10.1175/BAMSD-12-00241.1.   DOI
24 NMOC, 2013, Operational Upgrade to Predictive Ocean Atmosphere Model for Australia (POAMA-M24) (NMOC Operations Bulletin No. 96). Bureau of Meteorology, Australia, 27 p, http://www.bom.gov.au/ australia/charts/bulletins/apob96.pdf.
25 S2S Prediction Project, 2021, S2S Prediction Project. http://s2sprediction.net (April 12th 2021).
26 Vitart, F. and Brown, A., 2019, S2S Forecasting: Towards Seamless Prediction. WMO Bulletin, 68(1), 70-74, https://public.wmo.int/en/resources/bulletin/s2s-forecasting-towards-seamless-prediction.
27 Edson, J. B., Jampana, V., Weller, R. A., Bigorre, S. P., Plueddemann, A. J., Fairall, C. W., Miller, S. D., Mahrt, L., Vickers, D., and Hersbach, H., 2013, On the exchange of momentum over the open ocean. Journal of Physical Oceanography, 43, 1589-1610, https://doi.org/10.1175/JPO-D-12-0173.1.   DOI
28 Woolnough, S. J., Vitart, F., and Balmaseda, M. A., 2007, The role of the ocean in the Madden-Julian oscillation: Implications for MJO prediction. Quarterly Journal of the Royal Meteorological Society: A journal of the atmospheric sciences, applied meteorology and physical oceanography, 133(622), 117-128, https://doi.org/10.1002/qj.4.   DOI
29 World Meteorological Organization, 2013, Sub-seasonal to Seasonal Prediction: Research Implementation Plan. World Meteorological Organization (WMO), 71 p.
30 World Meteorological Organization, 2020, Guidance on Operational Practices for Objective Seasonal Forecasting. World Meteorological Organization (WMO) WMO-No. 1246, 106 p.
31 Jeong, Y. Y., Moon, I.-J., and Chang, P.-H., 2016, Accuracy of short-term ocean prediction and the effect of atmosphere-ocean coupling on KMA Global Seasonal Forecast System (GloSea5) during the development of ocean stratification. Atmosphere, 26(4), 599-615, https://doi.org/10.14191/Atmos.2016.26.4.599.   DOI
32 Lee, H., Moon, B.-K., Kim, H.-K., Wie, J., Park, H. J., Chang, P.-H., Lee, J., and Kim, Y., 2021, Supplementary Materials for Multivariable Integrated Evaluation of GloSea5-GC2 Ocean Hindcasting. https://doi.org/10.5281/zenodo.5707825 (November 17th 2021)   DOI
33 Hunke, E. C. and Lipscomb, W. H., 2010, CICE: The sea ice model documentation and software user's manual, version 4.1. Los Alamos National Laboratory, Technical report LA-CC-06-012, 75 p.
34 Wu, L., Rutgersson, A., Sahlee, E., and Larsen, X. G., 2016, Swell impact on wind stress and atmospheric mixing in a regional coupled atmosphere-wave model. Journal of Geophysical Research: Oceans, 121(7), 4633-4648, https://doi.org/10.1002/2015JC011576.   DOI
35 Xu, Z., Han, Y., and Fu, C., 2017, Multivariable integrated evaluation of model performance with the vector field evaluation diagram. Geoscientific Model Development, 10, 3805-3820, https://doi.org/10.5194/gmd-10-3805-2017.   DOI
36 Zhou, X., Luo, J. J., Alves, O., and Hendon, H., 2015, Comparison of GLOSEA5 and POAMA2. 4 hindcasts 1996-2009: Ocean focus. Bureau of Meteorology, 010, 95 p.
37 Heo, S.-I., Hyun, Y.-K., Ryu, Y., Kan, H.-S., Lim, Y.-J., and Kim, Y., 2019, An assessment of applicability of heat waves using extreme forecast index in KMA climate prediction system (GloSea5). Atmosphere, 29(3), 257-267, https://doi.org/10.14191/Atmos.2019.29.3.257.   DOI
38 Hudson, D., Marshall, A. G., Yin, Y., Alves, O., and Hendon, H. H., 2013, Improving intraseasonal prediction with a new ensemble generation strategy. Monthly Weather Review, 141(12), 4429-4449, https://doi.org/10.1175/MWR-D-13-00059.1.   DOI
39 Met Office, 2021, Met Office seasonal prediction system: GloSea5. https://www.metoffice.gov.uk/research/climate/seasonal-to-decadal/gpc-outlooks/user-guide/technical-glosea5 (February 10th 2021).
40 Jackson, L. C., Dubois, C., Forget, G., Haines, K., Harrison, M., Iovino, D., Kohl A., Mignac, D., Masina, S., Peterson, K. A., Piecuch, C. G., Roberts, C. D., Robson, J., Storto, A., Toyoda, T., Valdivieso, M., Wilson, C., Wang, Y., and Zuo, H., 2019, The mean state and variability of the North Atlantic circulation: A perspective from ocean reanalyses. Journal of Geophysical Research: Oceans, 124(12), 9141-9170, https://doi.org/10.1029/2019JC015210.   DOI
41 Good, S. A., Martin, M. J, and Rayner, N. A., 2013, EN4: Quality controlled ocean temperature and salinity profiles and monthly objective analyses with uncertainty estimates. Journal of Geophysical Research: Oceans, 118(12), 6704-6716, https://doi.org/10.1002/2013JC009067.   DOI
42 Jackson, L. C., Kahana, R., Graham, T., Ringer, M. A., Woollings, T., Mecking, J.V., and Wood, R.A., 2015, Global and European climate impacts of a slowdown of the AMOC in a high resolution GCM. Climate Dynamics, 45(11), 3299-3316, https://10.1007/s00382-015-2540-2.   DOI
43 Ji, M., Kumar, A., and Leetmaa, A., 1994, A multiseason climate forecast system at the National Meteorological Center. Bulletin of the American Meteorological Society, 74(4), 569-578.
44 Jung, M.-I., Son, S.-W., Choi, J., and Kang, H.-S., 2015, Assessment of 6-month lead prediction skill of the GloSea5 hindcast experiment. Atmosphere, 25(2), 323-337, https://dx.doi.org/10.14191/Atmos.2015.25.2.323.   DOI
45 Korea Meteorological Administration, 2014, Development of the Diagnostic System for the Korea-UK Joint Climate Prediction System (II). Korea Meteorological Administration, 2014, 329 p.
46 MacLachlan, C., Arribas, A., Peterson, K. A., Maidens, A., Fereday, D., Scaife, A. A., Gordon, M., Vellinga, M., Williams, A., Comer, R. E., Camp, J., Xavier, P., and Madec, G., 2015, Global Seasonal forecast system version 5 (GloSea5): a high-resolution seasonal forecast system. Quarterly Journal of the Royal Meteorological Society, 141, 1072-1084, https://doi.org/10.1002/qj.2396.   DOI
47 Madec, G., 2008, NEMO Ocean Engine, Note du Pole de Modelisation. Institut Pierre-Simon Laplace (IPSL), 27, 300 p.
48 Magnusson, L., Alonso-Balmaseda, M., Corti, S., Molteni, F., and Stockdale, T., 2013, Evaluation of forecast strategies for seasonal and decadal forecasts in presence of systematic model errors. Climate dynamics, 41(9-10), 2393-2409, https://doi.org/10.1007/s00382-012-1599-2.   DOI
49 Best, M. J., Pryor, M., Clark, D. B., Rooney, G. G., Essery, R. L. H., Menard, C. B., Edwards, J. M., Hendry, M. A., Porson, A., Gedney, N., Mercado, L. M., Sitch, S., Blyth, E., Boucher, O., Cox, P. M., Grimmond, C. S. B., and Harding, R. J., 2011, The Joint UK Land Environment Simulator (JULES), model description-Part 1: Energy and water fluxes. Geoscientific Model Development, 4, 677-699, https://doi.org/10.5194/gmd-4-677-2011.   DOI
50 Blockley, E. W., Martin, M. J., McLaren, A. J., Ryan, A. G., Waters, J., Lea, D. J., Mirouze, I., Peterson, K. A., Sellar, A., and Storkey, D., 2014, Recent development of the Met Office operational ocean forecasting system: an overview and assessment of the new Global FOAM forecasts. Geoscientific Model Development, 7, 2613-2014, https://doi.org/10.5194/gmd-7-2613-2014.   DOI
51 Lee, H., Chang, P.-H., Kang, K., Kang, H.-S., and Kim, Y., 2018, Assessment of ocean surface current forecasts from high resolution Global Seasonal Forecast System version 5. Ocean and Polar Research, 40(3), 99-114, https://dx.doi.org/10.4217/OPR.2018.40.3.099.   DOI
52 Ma, X., Jing, Z., Chang, P., Liu, X., Montuoro, R., Small, R. J., Bryan, F. O., Greatbatch, R. J., Brandt, P., Wu, D., Lin, X., and Wu, L., 2016, Western boundary currents regulated by interaction between ocean eddies and the atmosphere. Nature, 535(7613), 533-537, https://doi.org/10.1038/nature18640.   DOI
53 Lee, S. S., Lee. J.-Y, Ha, K.-J., Wang, B., and Schemm J. K. E., 2011, Deficiencies and possibilities for long-lead coupled climate prediction of the Western North Pacific-East Asian summer monsoon. Climate Dynamics, 36, 1173-1188.   DOI
54 Liu, Y., Ren, H.L., Scaife, A.A., and Li, C., 2018, Evaluation and statistical downscaling of East Asian summer monsoon forecasting in BCC and MOHC seasonal prediction systems. Quarterly Journal of the Royal Meteorological Society, 144(717), 2798-2811, https://doi.org/10.1002/qj.3405.   DOI
55 Lu, B., Ren, H. L., Scaife, A. A., Wu, J., Dunstone, N., Smith, D., Wan, J., Eade, R., MacLachlan, C., and Gordon, M., 2018, An extreme negative Indian Ocean Dipole event in 2016: Dynamics and predictability. Climate Dynamics, 51, 89-100, https://doi.org/10.1007/s00382-017-3908-2.   DOI