• 제목/요약/키워드: Best Linear Unbiased Prediction

검색결과 48건 처리시간 0.021초

The Usage of an SNP-SNP Relationship Matrix for Best Linear Unbiased Prediction (BLUP) Analysis Using a Community-Based Cohort Study

  • Lee, Young-Sup;Kim, Hyeon-Jeong;Cho, Seoae;Kim, Heebal
    • Genomics & Informatics
    • /
    • 제12권4호
    • /
    • pp.254-260
    • /
    • 2014
  • Best linear unbiased prediction (BLUP) has been used to estimate the fixed effects and random effects of complex traits. Traditionally, genomic relationship matrix-based (GRM) and random marker-based BLUP analyses are prevalent to estimate the genetic values of complex traits. We used three methods: GRM-based prediction (G-BLUP), random marker-based prediction using an identity matrix (so-called single-nucleotide polymorphism [SNP]-BLUP), and SNP-SNP variance-covariance matrix (so-called SNP-GBLUP). We used 35,675 SNPs and R package "rrBLUP" for the BLUP analysis. The SNP-SNP relationship matrix was calculated using the GRM and Sherman-Morrison-Woodbury lemma. The SNP-GBLUP result was very similar to G-BLUP in the prediction of genetic values. However, there were many discrepancies between SNP-BLUP and the other two BLUPs. SNP-GBLUP has the merit to be able to predict genetic values through SNP effects.

Genome-wide Association Study (GWAS) and Its Application for Improving the Genomic Estimated Breeding Values (GEBV) of the Berkshire Pork Quality Traits

  • Lee, Young-Sup;Jeong, Hyeonsoo;Taye, Mengistie;Kim, Hyeon Jeong;Ka, Sojeong;Ryu, Youn-Chul;Cho, Seoae
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제28권11호
    • /
    • pp.1551-1557
    • /
    • 2015
  • The missing heritability has been a major problem in the analysis of best linear unbiased prediction (BLUP). We introduced the traditional genome-wide association study (GWAS) into the BLUP to improve the heritability estimation. We analyzed eight pork quality traits of the Berkshire breeds using GWAS and BLUP. GWAS detects the putative quantitative trait loci regions given traits. The single nucleotide polymorphisms (SNPs) were obtained using GWAS results with p value <0.01. BLUP analyzed with significant SNPs was much more accurate than that with total genotyped SNPs in terms of narrow-sense heritability. It implies that genomic estimated breeding values (GEBVs) of pork quality traits can be calculated by BLUP via GWAS. The GWAS model was the linear regression using PLINK and BLUP model was the G-BLUP and SNP-GBLUP. The SNP-GBLUP uses SNP-SNP relationship matrix. The BLUP analysis using preprocessing of GWAS can be one of the possible alternatives of solving the missing heritability problem and it can provide alternative BLUP method which can find more accurate GEBVs.

A study of the genomic estimated breeding value and accuracy using genotypes in Hanwoo steer (Korean cattle)

  • Eun Ho, Kim;Du Won, Sun;Ho Chan, Kang;Ji Yeong, Kim;Cheol Hyun, Myung;Doo Ho, Lee;Seung Hwan, Lee;Hyun Tae, Lim
    • 농업과학연구
    • /
    • 제48권4호
    • /
    • pp.681-691
    • /
    • 2021
  • The estimated breeding value (EBV) and accuracy of Hanwoo steer (Korean cattle) is an indicator that can predict the slaughter time in the future and carcass performance outcomes. Recently, studies using pedigrees and genotypes are being actively conducted to improve the accuracy of the EBV. In this study, the pedigree and genotype of 46 steers obtained from livestock farm A in Gyeongnam were used for a pedigree best linear unbiased prediction (PBLUP) and a genomic best linear unbiased prediction (GBLUP) to estimate and analyze the breeding value and accuracy of the carcass weight (CWT), eye muscle area (EMA), back-fat thickness (BFT), and marbling score (MS). PBLUP estimated the EBV and accuracy by constructing a numeric relationship matrix (NRM) from the 46 steers and reference population I (545,483 heads) with the pedigree and phenotype. GBLUP estimated genomic EBV (GEBV) and accuracy by constructing a genomic relationship matrix (GRM) from the 46 steers and reference population II (16,972 heads) with the genotype and phenotype. As a result, in the order of CWT, EMA, BFT, and MS, the accuracy levels of PBLUP were 0.531, 0.519, 0.524 and 0.530, while the accuracy outcomes of GBLUP were 0.799, 0.779, 0.768, and 0.810. The accuracy estimated by GBLUP was 50.1 - 53.1% higher than that estimated by PBLUP. GEBV estimated with the genotype is expected to show higher accuracy than the EBV calculated using only the pedigree and is thus expected to be used as basic data for genomic selection in the future.

한우 SNP Chip 및 혈통 데이터를 이용한 경기 한우 암소의 유전능력평가 정확도 분석 (The Accuracy of Genomic Estimated Breeding Value Using a Hanwoo SNP Chip and the Pedigree Data of Hanwoo Cows in Gyeonggi Province)

  • 이광현;이윤석;문선정;공홍식
    • 생명과학회지
    • /
    • 제32권4호
    • /
    • pp.279-284
    • /
    • 2022
  • 본 연구는 일반농가에서 적용 가능한 유전평가시스템을 구축을 위해 경기 지역에서 사육중인 암소 619두를 BLUP (Best Linear Unbiased Prediction)과 GBLUP (Genomic Best Linear Unbiased Prediction)을 사용하여 각 형질(도체중, 등심단면적, 등지방두께, 근내지방도) 별 추정 육종가의 정확도를 비교분석 하였다. GBLUP의 경우 참조집단의 크기를 다르게 그룹을 나누어 분석하였다. 분석결과 GBLUP 참조집단의 크기가 커질수록 각 형질의 육종가의 정확도도 상승하는 것을 확인 하였다. BLUP과 GBLUP 방법을 사용하여 추정한 육종가의 정확도를 비교하면, GBLUP 방법을 사용하여 육종가를 추정하였을 때 도체중, 등심단면적, 등지방두께 근내지방도순으로 각각 0.10, 0.09, 0.09, 0.11 이상 상승한 것을 확인할 수 있었다. 따라서, GBLUP 방법을 암소 평가 및 선발에 적용한다면, 정밀하고 정확한 개체 선발이 가능하고 참조집단의 크기를 더욱 키운다면 보다 정확한 개체 선발을 할 수 있기 때문에 선발의 효율성이 증가할 것으로 사료된다.

Validation of selection accuracy for the total number of piglets born in Landrace pigs using genomic selection

  • Oh, Jae-Don;Na, Chong-Sam;Park, Kyung-Do
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제30권2호
    • /
    • pp.149-153
    • /
    • 2017
  • Objective: This study was to determine the relationship between estimated breeding value and phenotype information after farrowing when juvenile selection was made in candidate pigs without phenotype information. Methods: After collecting phenotypic and genomic information for the total number of piglets born by Landrace pigs, selection accuracy between genomic breeding value estimates using genomic information and breeding value estimates of best linear unbiased prediction (BLUP) using conventional pedigree information were compared. Results: Genetic standard deviation (${\sigma}_a$) for the total number of piglets born was 0.91. Since the total number of piglets born for candidate pigs was unknown, the accuracy of the breeding value estimated from pedigree information was 0.080. When genomic information was used, the accuracy of the breeding value was 0.216. Assuming that the replacement rate of sows per year is 100% and generation interval is 1 year, genetic gain per year is 0.346 head when genomic information is used. It is 0.128 when BLUP is used. Conclusion: Genetic gain estimated from single step best linear unbiased prediction (ssBLUP) method is by 2.7 times higher than that the one estimated from BLUP method, i.e., 270% more improvement in efficiency.

Application of deep learning with bivariate models for genomic prediction of sow lifetime productivity-related traits

  • Joon-Ki Hong;Yong-Min Kim;Eun-Seok Cho;Jae-Bong Lee;Young-Sin Kim;Hee-Bok Park
    • Animal Bioscience
    • /
    • 제37권4호
    • /
    • pp.622-630
    • /
    • 2024
  • Objective: Pig breeders cannot obtain phenotypic information at the time of selection for sow lifetime productivity (SLP). They would benefit from obtaining genetic information of candidate sows. Genomic data interpreted using deep learning (DL) techniques could contribute to the genetic improvement of SLP to maximize farm profitability because DL models capture nonlinear genetic effects such as dominance and epistasis more efficiently than conventional genomic prediction methods based on linear models. This study aimed to investigate the usefulness of DL for the genomic prediction of two SLP-related traits; lifetime number of litters (LNL) and lifetime pig production (LPP). Methods: Two bivariate DL models, convolutional neural network (CNN) and local convolutional neural network (LCNN), were compared with conventional bivariate linear models (i.e., genomic best linear unbiased prediction, Bayesian ridge regression, Bayes A, and Bayes B). Phenotype and pedigree data were collected from 40,011 sows that had husbandry records. Among these, 3,652 pigs were genotyped using the PorcineSNP60K BeadChip. Results: The best predictive correlation for LNL was obtained with CNN (0.28), followed by LCNN (0.26) and conventional linear models (approximately 0.21). For LPP, the best predictive correlation was also obtained with CNN (0.29), followed by LCNN (0.27) and conventional linear models (approximately 0.25). A similar trend was observed with the mean squared error of prediction for the SLP traits. Conclusion: This study provides an example of a CNN that can outperform against the linear model-based genomic prediction approaches when the nonlinear interaction components are important because LNL and LPP exhibited strong epistatic interaction components. Additionally, our results suggest that applying bivariate DL models could also contribute to the prediction accuracy by utilizing the genetic correlation between LNL and LPP.

On Frequentist Properties of Some Hierachical Bayes Predictors for Small Domain Data in Repeated Surveys

  • Narinder K. Nangia;Kim, Dal-Ho
    • Journal of the Korean Statistical Society
    • /
    • 제26권2호
    • /
    • pp.245-259
    • /
    • 1997
  • The paper shows that certain hierachical Bayes (HB) predictors for small domain data in repeated surveys "universally" or "stochastically" dominate all linear unbiased predictors. Also, the HB predictors are "best" within the class of all equivariant predictors under a certain group of transformations.tain group of transformations.

  • PDF

An Estimation of The Unknown Theory Constants Using A Simulation Predictor

  • 박정수
    • 한국시뮬레이션학회논문지
    • /
    • 제2권1호
    • /
    • pp.125-133
    • /
    • 1993
  • A statistical method is described for estimation of the unknown constants in a theory using both of the computer simulation data and the real experimental data, The best linear unbiased predictor based on a spatial linear model is fitted from the computer simulation data alone. Then nonlinear least squares estimation method is applied to the real experimental data using the fitted prediction model as if it were the true simulation model. An application to the computational nuclear fusion devices is presented, where the nonlinear least squares estimates of four transport coefficients of the theoretical nuclear fusion model are obtained.

  • PDF

The Prediction of the Expected Current Selection Coefficient of Single Nucleotide Polymorphism Associated with Holstein Milk Yield, Fat and Protein Contents

  • Lee, Young-Sup;Shin, Donghyun;Lee, Wonseok;Taye, Mengistie;Cho, Kwanghyun;Park, Kyoung-Do;Kim, Heebal
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제29권1호
    • /
    • pp.36-42
    • /
    • 2016
  • Milk-related traits (milk yield, fat and protein) have been crucial to selection of Holstein. It is essential to find the current selection trends of Holstein. Despite this, uncovering the current trends of selection have been ignored in previous studies. We suggest a new formula to detect the current selection trends based on single nucleotide polymorphisms (SNP). This suggestion is based on the best linear unbiased prediction (BLUP) and the Fisher's fundamental theorem of natural selection both of which are trait-dependent. Fisher's theorem links the additive genetic variance to the selection coefficient. For Holstein milk production traits, we estimated the additive genetic variance using SNP effect from BLUP and selection coefficients based on genetic variance to search highly selective SNPs. Through these processes, we identified significantly selective SNPs. The number of genes containing highly selective SNPs with p-value <0.01 (nearly top 1% SNPs) in all traits and p-value <0.001 (nearly top 0.1%) in any traits was 14. They are phosphodiesterase 4B (PDE4B), serine/threonine kinase 40 (STK40), collagen, type XI, alpha 1 (COL11A1), ephrin-A1 (EFNA1), netrin 4 (NTN4), neuron specific gene family member 1 (NSG1), estrogen receptor 1 (ESR1), neurexin 3 (NRXN3), spectrin, beta, non-erythrocytic 1 (SPTBN1), ADP-ribosylation factor interacting protein 1 (ARFIP1), mutL homolog 1 (MLH1), transmembrane channel-like 7 (TMC7), carboxypeptidase X, member 2 (CPXM2) and ADAM metallopeptidase domain 12 (ADAM12). These genes may be important for future artificial selection trends. Also, we found that the SNP effect predicted from BLUP was the key factor to determine the expected current selection coefficient of SNP. Under Hardy-Weinberg equilibrium of SNP markers in current generation, the selection coefficient is equivalent to $2^*SNP$ effect.

Accuracy of genomic breeding value prediction for intramuscular fat using different genomic relationship matrices in Hanwoo (Korean cattle)

  • Choi, Taejeong;Lim, Dajeong;Park, Byoungho;Sharma, Aditi;Kim, Jong-Joo;Kim, Sidong;Lee, Seung Hwan
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제30권7호
    • /
    • pp.907-911
    • /
    • 2017
  • Objective: Intramuscular fat is one of the meat quality traits that is considered in the selection strategies for Hanwoo (Korean cattle). Different methods are used to estimate the breeding value of selection candidates. In the present work we focused on accuracy of different genotype relationship matrices as described by forni and pedigree based relationship matrix. Methods: The data set included a total of 778 animals that were genotyped for BovineSNP50 BeadChip. Among these 778 animals, 72 animals were sires for 706 reference animals and were used as a validation dataset. Single trait animal model (best linear unbiased prediction and genomic best linear unbiased prediction) was used to estimate the breeding values from genomic and pedigree information. Results: The diagonal elements for the pedigree based coefficients were slightly higher for the genomic relationship matrices (GRM) based coefficients while off diagonal elements were considerably low for GRM based coefficients. The accuracy of breeding value for the pedigree based relationship matrix (A) was 13% while for GRM (GOF, G05, and Yang) it was 0.37, 0.45, and 0.38, respectively. Conclusion: Accuracy of GRM was 1.5 times higher than A in this study. Therefore, genomic information will be more beneficial than pedigree information in the Hanwoo breeding program.