Browse > Article
http://dx.doi.org/10.5713/ajas.15.0287

Genome-wide Association Study (GWAS) and Its Application for Improving the Genomic Estimated Breeding Values (GEBV) of the Berkshire Pork Quality Traits  

Lee, Young-Sup (Department of Natural Science, Interdisciplinary Program in Bioinformatics, Seoul National University)
Jeong, Hyeonsoo (Department of Natural Science, Interdisciplinary Program in Bioinformatics, Seoul National University)
Taye, Mengistie (Department of Agricultural Biotechnology, Animal Biotechnology, and Research Institute for Agriculture and Life Sciences, Seoul National University)
Kim, Hyeon Jeong (C&K Genomics Inc.)
Ka, Sojeong (Department of Agricultural Biotechnology, Animal Biotechnology, and Research Institute for Agriculture and Life Sciences, Seoul National University)
Ryu, Youn-Chul (Division of Biotechnology, Sustainable Agriculture Research Institute, Jeju National University)
Cho, Seoae (C&K Genomics Inc.)
Publication Information
Asian-Australasian Journal of Animal Sciences / v.28, no.11, 2015 , pp. 1551-1557 More about this Journal
Abstract
The missing heritability has been a major problem in the analysis of best linear unbiased prediction (BLUP). We introduced the traditional genome-wide association study (GWAS) into the BLUP to improve the heritability estimation. We analyzed eight pork quality traits of the Berkshire breeds using GWAS and BLUP. GWAS detects the putative quantitative trait loci regions given traits. The single nucleotide polymorphisms (SNPs) were obtained using GWAS results with p value <0.01. BLUP analyzed with significant SNPs was much more accurate than that with total genotyped SNPs in terms of narrow-sense heritability. It implies that genomic estimated breeding values (GEBVs) of pork quality traits can be calculated by BLUP via GWAS. The GWAS model was the linear regression using PLINK and BLUP model was the G-BLUP and SNP-GBLUP. The SNP-GBLUP uses SNP-SNP relationship matrix. The BLUP analysis using preprocessing of GWAS can be one of the possible alternatives of solving the missing heritability problem and it can provide alternative BLUP method which can find more accurate GEBVs.
Keywords
Best Linear Unbiased Prediction; Genome Wide Association Study; Missing Heritability Problem; Sherman-Morrison-Woodbury Lemma; Single Nucleotide Polymorphism-Genomic Best Linear Unbiased Prediction; Berkshire Pigs;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Bolormaa, S., J. E. Pryce, K. Kemper, K. Savin, B. J. Hayes, W. Barendse, Y. Zhang, C. M. Reich, B. A. Mason, and R. J. Bunch et al. 2013. Accuracy of prediction of genomic breeding values for residual feed intake and carcass and meat quality traits in bos taurus, bos indicus, and composite beef cattle. J. Anim. Sci. 91:3088-3104.   DOI   ScienceOn
2 Davis, C. G. and B.-H. Lin. 2005. Factors affecting us pork consumption US Department of Agriculture, Economic Research Service, Washington, DC, USA.
3 Eichler, E. E., J. Flint, G. Gibson, A. Kong, S. M. Leal, J. H. Moore, and J. H. Nadeau. 2010. Missing heritability and strategies for finding the underlying causes of complex disease. Nat. Rev. Genet. 11:446-450.   DOI   ScienceOn
4 Endelman, J. B. 2011. Ridge regression and other kernels for genomic selection with r package rrblup. Plant Genome 4:250-255.   DOI
5 Feero, W. G., A. E. Guttmacher. and T. A. Manolio. 2010. Genomewide association studies and assessment of the risk of disease. N. Engl. J. Med. 363:166-176.   DOI   ScienceOn
6 Fernando, R. L., J. C. Dekkers, and D. J. Garrick. 2014. A class of bayesian methods to combine large numbers of genotyped and non-genotyped animals for whole-genome analyses. Genet. Sel. Evol. 46:50.   DOI   ScienceOn
7 Goddard, M., B. J. Hayes, and T. H. E. Meuwissen. 2011. Using the genomic relationship matrix to predict the accuracy of genomic selection.J. Anim. Breed. Genet. 128:409-421.   DOI   ScienceOn
8 Henderson, C. R. 1975. Best linear unbiased estimation and prediction under a selection model. Biometrics 31:423-447.   DOI   ScienceOn
9 Hennig, C. 2010. Fpc: Flexible procedures for clustering. R package version 2:0-3. https://cran.r-project.org/web/packages/fpc/, Accessed August 13, 2015.
10 Jiang, J. 1997. A derivation of blup.best linear unbiased predictor. Stat. Probabil. Lett. 32:321-324.   DOI   ScienceOn
11 Lee, T., D.-H. Shin, S. Cho, H. S. Kang, S. H. Kim, H.-K. Lee, H. Kim, and K.-S. Seo. 2014a. Genome-wide association study of integrated meat quality-related traits of the duroc pig breed. Asian Australas. J. Anim. 27:303-309.   DOI   ScienceOn
12 Lee, Y.-S., H.-J. Kim, S. Cho, and H. Kim. 2014b. The usage of an snp-snp relationship matrix for best linear unbiased prediction (blup) analysis using a community-based cohort study. Genome. Inform. 12:254-260.   DOI   ScienceOn
13 Leeds, T. D. 2005. Pork Quality Improvement: Estimates of Genetic Parameters and Evaluation of Novel Selection Criteria. Ph.D. Thesis, The Ohio State University, Columbus, OH, USA.
14 Legarra, A., I. Aguilar, and I. Misztal. 2009. A relationship matrix including full pedigree and genomic information. J. Dairy Sci. 92:4656-4663.   DOI   ScienceOn
15 Manolio, T. A., F. S. Collins, N. J. Cox, D. B. Goldstein, L. A. Hindorff, D. J. Hunter, M. I. McCarthy, E. M. Ramos, L. R. Cardon, and A. Chakravarti et al. 2009. Finding the missing heritability of complex diseases. Nature 461:747-753.   DOI   ScienceOn
16 Meuwissen, T. H., B. J. Hayes, and M. E. Goddard. 2001. Prediction of total genetic value using genome-wide dense marker maps. Genetics 157:1819-1829.
17 Purcell, S., B. Neale, K. Todd-Brown, L. Thomas, M. A. Ferreira, D. Bender, J. Maller, P. Sklar, P. I. De Bakker, and M. J. Daly. 2007. Plink: A tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet. 81:559-575.   DOI   ScienceOn
18 Sellier, P. 1998. Genetics of meat and carcass traits. The Genetics of the Pig (Eds. M. Rothschild and A. Ruvinsky). CAB International Wallingford, Oxon, UK: 463-510.
19 Sherman, J. and W. J. Morrison. 1950. Adjustment of an inverse matrix corresponding to a change in one element of a given matrix. Ann. Math. Stat. 21:124-127.   DOI
20 Soller, M., S. Weigend, M. N. Romanov, J. C. M. Dekkers, and S. J. Lamont. 2006. Strategies to assess structural variation in the chicken genome and its associations with biodiversity and biological performance. Poult. Sci. 85:2061-2078.   DOI
21 Woodbury, M. A. 1950. Inverting modified matrices. Memorandum report, Princeton University, Princeton, NJ USA, 42:106.
22 Yang, J., B. Benyamin, B. P. McEvoy, S. Gordon, A. K. Henders, D. R. Nyholt, P. A. Madden, A. C. Heath, N. G. Martin, and G. W. Montgomery. 2010. Common snps explain a large proportion of the heritability for human height. Nat. Genet. 42:565-569.   DOI   ScienceOn
23 Zhang, H., Z. Wang, S. Wang, and H. Li. 2012a. Progress of genome wide association study in domestic animals. J. Anim. Sci. Biotech. 3:26.   DOI   ScienceOn
24 Zhang, Z., J. He, H. Zhang, P. Gao, M. Erbe, H. Simianer, and J. Li. 2014. Results of genome wide association studies improve the accuracy of genomic selection. 10th world congress on genetics applied to livestock production, The Westin Bayshore, Vancouver, BC, Canada, #695 (the poster number).