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On Frequentist Properties of Some
Hierarchical Bayes Predictors for Small
Domain Data in Repeated Surveys
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ABSTRACT

The paper shows that certain hierarchical Bayes (HB) predictors for
small domain data in repeated surveys “universally” or “stochastically”
dominate all linear unbiased predictors. Also, the HB predictors are
“best” within the class of all equivariant predictors under a certain
group of transformations.
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sal domination; Best equivariant prediction.

1. INTRODUCTION

Bayesian methods have been used quite extensively in recent years for
solving small area (or domain) estimation problem. Particularly effective in
this regard has been the hierarchical or empirical Bayes (HB or EB) approach
which is especially suitable for a systematic connection of local areas through
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models. We may refer to Fay and Herriot (1979), Ghosh and Meeden (1986),
Ghosh and Lahiri (1987), Battese, Harter and Fuller (1988), Prasad and Rao
(1990), Datta and Ghosh (1991a), among others. But most model-based
inferences for small area estimation considered “borrowing strength” only
from similar other areas to improve small area estimation.

Often small area populations are subject to change in time. Usually the
time series information is available through the repeated surveys, carried
out at regular time intervals by industries and government agencies. In such
surveys, one has at one’s disposal not only the current data, but also data from
similar past experiments. Typically, only a few samples are available from
an individual area. Recently, Ghosh, Nangia and Kim (1996) considered the
HB model for borrowing strength over time in addition to borrowing strength
from other local areas in small area estimation based on data from repeated
surveys. .

Datta and Ghosh (1991a) considered a HB procedure for prediction in
mixed linear models and utilized the results for small area estimation. Datta
and Ghosh (1991b) showed the frequentist properties of some HB predictors
in finite population sampling when ratios of variance components are known.
In this paper we extend the results of Datta and Ghosh (1991b) in the context
of repeated surveys.

The outline of the remaining sections is as follows. In Section 2 we consider
a HB time series model as in Ghosh, Nangia and Kim (1996) and provide the
predictive distribution of unobserved population units at all the time points
given the time series data on the sampled units. In Section 3 and Section 4,
it is shown that proposed HB predictors have similar frequentist properties
as in Datta and Ghosh (1991b) even in the context of repeated surveys. In
specific, these HB predictors dominate “universally” or “stochastically” the
linear unbiased predictors in the sense of Hwang (1985). Also, under a suitable
group of transformations, the HB predictors are “best” within the class of all
equivariant predictors for elliptically symmetric distributions.

2. THE MODEL AND THE HB PREDICTORS

In this section, we consider a HB model for prediction of the charac-
teristic of interest (e.g. the population mean for each small area or do-
main) in the context of repeated surveys. Let Yi; denote some character-
istic of interest associated with the k'* unit at time j in the i** small area

(k = 1)""N'ij;j - 1a7t71 = 1a"',m)' Let Y-,(Jl) = ()/ijly"'v}/ij,n,',-)T
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and Y,-(f) = (Yijm,+1, ", Yijn,,)". The superscripts (1) and (2) are used to
denote the sampled and non-sampled units in the i** small area at time j,
respectively. Here N;; is the population size of the i** small area at time j
from which a sample of size n;; is taken (1 < i < m;1 < j < t). Known

design matrices XS ) (n:; x p) and ZS) (ni; % q) correspond to the sampled
units and Xg-) ((N;; = ny;) x p) and Z:?) ((Ni; — ny;) % q) correspond to the
unsampled units. Assume rank(XfJI- )) = rank(XE?)) = p.

We consider the following Bayesian model:

L ( ij ij rtng ij 7‘~1V~ .
(2) (2) ’ (2) ’ ij |
Y 0] 0;;
65
IL. ( 6.5

IL bjlb;_1,r & N(H;b,_y, 7 'W);(j = 1,--,1)

We assume that V;;, ¥,,(: = 1,---,m;57 = 1,---,t), and W are known
positive definite (p.d.) matrices. Note that the proposed model assumes
known ratios of variance components for simplicity as in Datta and Ghosh
(1991b). H;(¢q x q),(j = 1,---,t) are known matrices. by is assumed to be
known. Without any loss of generality, we assume by, = 0.

Before writing the stages I-1II of the above model in a compact form, we
need to introduce a few notations. In what follows, we shall use the notation
I, for an identity matrix of order v and 1, for a u-component column vector
with each element equal to 1. § denotes a null matrix of suitable order. Also,

anB -+ a; B
let A,x, ® B,.x, denote the matrix | : : and let &L A,
aB - a,,B
A, - D
denote the matrix :

o A,
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We define
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XE}’F,XE?T,---,XE}’T)T; (=1-.m)

i=,Hk fortl=1,2,---,7; 7=1,---,1
quorlzj-{-l;j:]_’...,t

AL 0 ]
1 1
B — Z£2)U22 ng) 0
it . .
| zPu, zZPU, AR
[ Z 0 0 ]
B® _ ZP Uy 7.3 )
it T .
zPvu, 7Y, z? |
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o i
B B(2)

1 2

BY = :z . B®= 2t
1 @
B, B

Vt = Block Dia'g (Vll,""vltav2ly'"vVQta'"9vml,"'vvmt)
¥, = Block Diag (¥y,---,%,).

We now write the model as a compact linear mixed model which incorpo-
rates all the information up to and including time ¢ for all the small areas.

We have, without any loss of generality, listed the sampled units first. To this
end, write

where
w~ N0, r 1 (I, @ W)),

n ~ N (O, r! (L, @ ¥,)+ V),

C(l) : A(l) B(l) ¢}
C = { ’ A = p ) B - ¢ s = n
(G )~ (R ) 2= (B ) = (o )

Given a and r,
C.~N(Aa, r' E,) | (2.2)

where
Et = Bt (Ig ® W) BtT + (Im ® ‘I’t) + vt-

Furthermore, we partition 3, as

a1 Bae
Yy, =
t [Em DI

where 2“1 is ny X ny, 2112 (: EtTZl) is ng X (Nt —-’n,), and Etgz is (Nt - nt) X
(N, —n,). Here ny = Y2, 31 ni; and N, = T, 30, Nij. Define

-1
z122.1 - 2t22 - Emzmzuz-

In model-based approach in survey sampling, the ?rimary ob%ective is
to find the conditional (predictive) distribution of C!¥ given c = ¢,
Before stating Theorem 2.1, we need to define certain known distributions.
A random variable Z is said to have a Gamma(a, 3) distribution if it has pdf
f(z) = [exp(—az)a®2""! /T(B)|i:>0. A random vector T = (T, -+, T;)" is
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said to have a multivariate t-distribution with location parameter p, scale
parameter ® and degrees of freedom v if it has pdf

g(t) X IQ‘_1/2[V + (t - u)’l‘@—](t N #)]—(V+P)/2.

For details regarding multivariate t-distribution see Zellner (1971) or Press
(1972).

Theorem 2.1. Consider the model given in (2.1) or (2.2). Assume that o
and r are independently distributed with - :

a ~ Umform (R?)

r ~ Gamma (;—,ao, %bo);,»ao > 0,59 > 0.

Also, assume that n, + by — p > 2..Then conditional on C(l) (1) C(z) i

distributed as multlvanate t with degrees of freedom n, + by — P, locatlon
parameter M,ct ) and scale parameter

Q = (n, +bo—p)~ (a +c K,c‘”) G, (2.3)
where ( |

T -1 T -
K =33 - Zial (A0 55AP) Al 5

S
M, =Sk, +A? (A0 SHAR) T A0 55
(2.4)

G, =X+ (A 2t212t11A(1))
-1 . T
< (AOTEHAL) (AP - B TiAL)

The proof of Theorem 2.1 is technical, and is defer.red to the Appendix.
We are interested in predicting linear functions of the form

= ¢V, c?y = P,cV + P,C?

where P; and P, are known matrices, on the basis of the observed ctl For
example, when P, = &7 | Py; and Py, = &1L, Py wheré P.=1[0 0.1, ,

-,0land Py, = [0, 0,---,1%, _, .-, 0], gt(C(l) 2)y reduces to the vector
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of finite population totals for the m small areas at time j, (j =1,2,---,t). In
particular, we may be interested in predicting retrospectively the population
totals for the small areas at the previous time points based on all the available
sampled data at a given time.

By Theorem 2.1, the HB predictor of ft(CEI), Cﬁz)) conditional on Cgl) =
cgl) is given by

e? (V) = (P +P;M,)cl. (2.5)

Note that the predictor e? (cfl) ) does not depend on the choice of the prior

(proper) distribution of r. In this sense, the predictor e (cgl)) is Tobust
against the choice of priors for r.

3. UNIVERSAL AND STOCHASTIC DOMINATION

To investigate the frequentist properties of the proposed HB predictors
given in Section 2, we consider the frequentist framework, where o and r are
unknown. We do not assign any prior distributions for o and r and treat them
as unknown parameters. Inference is done conditionally on these parameters.
Write ¢ = (a7, r)T. Also, we write " = (w”, n")" where w and n are as
defined in Section 2. We dispense with the normality assumptions on w and
n.

A predictor 6(051)) is said to be linear if 6(C§l)) has the form L,CEI) for
some known u X n, matrix L,. If in addition E¢ [6(C§D) - Q(Cil), 052) )] =

0 for all &, we say that 6§(C!") is a linear unbiased predictor (LUP) of
gt(cﬁ”, CEZ)). We consider the following quadratic loss

Li(¢,6) = ll6-¢&l?
= (5 - ft)TW(é - ft)
= trwLo(&, 8)],

where w is a nonnegative definite (n.n.d.) matrix and L, is the matrix loss
such that

Lo(&,6) = (6 —€)(6 —¢&)".

We shall refer to such a loss as generalized Euclidean error w.r.t. w. Our
question to ask now is whether the risk optimality of e (Cfl)) holds within
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the class of all unbiased predictors, or at least within the class of all LUP’s un-
der certain criterion for a broader family of distributions of e*. To investigate
this question, we need the notion of “universal” or “stochastic” domination as

. . 2
given in Hwang (1985). Let R (®,&,;6) = Es [L (”6(05”) — {t(Cfl), CSZ))”Q”

be the risk function of the predictor § for predicting ¢; under a loss function
which is a function of generalized Euclidean error w.r.t. w for some function
L. The following definition is adapted from Hwang (1985).

Definition 3.1. An estimator 61(051)) universally dominates 52(C§1) ) (un-
der the generalized Euclidean error loss w.r.t. Q) if for every &, and every
nondecreasing loss function L, R;(®, &; ;) < R.(®, &; 62) holds and for

a particular loss, the risk functions are not identical.

In Hwang (1985), it has been shown that §; universally dominates §, under
: 2
the generalized Euclidean error w.r.t  if and only if ”61 (Cﬁl)) - & (cﬁ", CEQ))"Q

is stochastically smaller than “62(051)) - 5,(051), CSQ))";. We say that a ran-
dom variable Z; is stochastically smaller than Z; if P;(Z; > z) < Py(Z2 > z)
for all z and all 9, and for some 8, Z,, and Z, have distinct distributions.

We now assume that e* has an elliptically symmetric distribution with
pdf given by

1
he* |A,1) o« [rlA] P freT AT ) (3.1)
where .
§ = Block Diag (B,(I, ® W)B{, (L. ®¥,)+ V).

Note that the normality of e* with mean O and variance covariance matrix
r~1A is sufficient but not necessary for (3.1) to hold. ‘

Now write D}, = B,Y)w +e) (j = 1,2). Then D; = (D", Dp")’
has also an elliptically symmetric pdf given by

N
ME; 1B, r) o [E| T frdTE ).

The next theorem shows that for a general class of elliptically symmetgic
distributions of e*, e’ (Cfl)) universally dominates every LUP of £, (Cgl) , Cﬁ )),
stcﬁ”, under every generalized Euclidean error loss w.r.t a n.n.d. 2.
Theorem 3.1. Under the model (2.1) and (3.1), e/ *(CM) universally dom-
inates every LUP 6(C£1)) = StCEI) of g,(cﬁ”, sz)) for every p.d. €.

Theorem 3.1 is based on the following lemma.
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Lemma 3.1. If D(N, x 1) has pdf h(d;|Iy,,r), then for every L(u x N,), u <
N, LD £ (LLT):D,, where D, = (I,, 0)D, 0 (u x (N, — u)) is a null
matrix and & means equal in distribution.

The proofs of Lemma 3.1 and Theorem 3.1 are similar as Lemma 1 and
Theorem 2 in Datta and Ghosh (1991b), and are omitted.

4. BEST EQUIVARIANT PREDICTION

In this section we concentrate on the equivariant prediction of ¢, (Cﬁ”, Cﬁz))

on the basis of CSI) under the suitable group of transformations. We assume
the elliptic symmetry of e*. Consider the group of transformations

G={gsa:B€ R, d>0:854(C;) =dC,+ AB}. (4.1)

Also assume that we partition C; and A, as in (2.1) and only clt) = cil) is

observed. If6(C§l)) estimates (PlAgl) +P2A§2))a, then d6(CV)+P,AM g+
P,A?3 should estimate (P;AY + P,AP)(da + 8) = (P P2)A,(da + 8).
Treating A,;(do + 3) as the new location parameter, one may expect that
§(dCM + A B) will estimate P;AY + PgAgz))(da + 3). So we should have

§(dCY + AN ) = ds(CV) + P1AM B + P,AP B, (4.2)

for all B and all d > 0. Now if we are interested in predicting §t(C$1), C(2))
instead of Eq,({t(C(l) (2))) P,A (l)a + PgA(Z)a we can still use 6(0(”)
and again we will impose (4.2) on é.

Note that the induced group of transformations on the parameter space
is given by

G={gsBERd>0:8,(8) = rda" +87)}.  (43)

A loss function L(§&,, ®;8) for predicting 5,(C§1), C§2)) by 6(051)) is invari-
ant under the group of transformations G if
L(d&(CY, C) + (PLA + PrA)B, B 4(®):
ds(C) + (P1A]Y + P,A)8)
=L, ), e 5(C)) - (4.4)
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for all Cﬁl),C§2),B,d(> 0) and ®. The two losses Ly = Ly and L3 = rL,
both satisfy (4.4).

We will now be interested in the best equivariant predictor of ¢, (Cf”, C§2) ).
The following two lemmas provide a useful characterization of the class of
equivariant predictors of {t(Cfl), C(Z))

Lemma 4.1. Let 60(C Y be an equivariant predictor for &, (C| c™, C?). Then

a necessary and sufficient condition for a predictor 6(0(1)) of &, (C(1 Cf ) to
be equivariant is that

§(CY) = 6,(C") + h(C) (4.5)

where h satisfies
h(dC" + AV 8) = dh(C") (4.6)

for all C!”, 8 and d > 0.

The proof of the Lemma 4.1 is straightforward, and is ommitted. To find
a representation of the function h in (4.6), we define

p(K.CV) = (k,cV/(cV K,CV)2}r (4.7)

cH"K,cMsop

: _ mr 1) _ (DyT (1)
Note that since K, X,1; K, = K,, so C;’ K,C;’ = (K,C;”’) ¥,;;(K,C,"’)
and p is indeed a function of KLCEI). It can be shown that p(KLCfl)) is a
maximal invariant under the group of transformations

¢ ={ghnBeR . d>0:g,(C")=dcl + A"} (4.8)

induced by G in the Cfl)-space.

The following lemma characterizes the class of functions h(CEl)) satisfy-
ing (4.6). We will use this lemma to characterize the class of equivariant
predictors.

Lemma 4.2. A function h(CEl))(u x 1) satisfies (4.6) if and only if h has the
representation

h(C{) = (/" K.CV)1s(p(K.C}")) (4.9)
where s(u x 1) is an arbitrary function of p(K,,Cﬁl)).

Proof. If. Assume h has the representation given in (4.9). Now, since
@c® + AV K, (aCc? + AMVB) = ¢?cV K,C" and since p(K,C{")
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is a maximal invariant under G', so p(K,(dC\" + A3)) = p(KtC( )) and
consequently

h(dCM + AMB) = (22cM K, cM)is(p(K,CM))
= dh(c").

Hence (4.6) is satisfied.
Only if. Since h satisfies (4.6) for all CSI),ﬁ and d > 0, taking d = 1, we

see that h must satisfy h(Cgl) +,A§1)B) = h(CEl)) for all Cfl) and 3. This
implies that h must be invariant under the group of transformations

¢" ={g,. 8 € R* : g, (CM) = cV + A5}, (4.10)

and hence must be a function of KtC(l). So h(Cfl)) = s(Kthl)) where
s(u x 1) is an arbitrary function satisfying

s(K,(dCY + AVB)) = ds(K,CM)
ie. s(dK,C") = ds(K,C") (4.11)

for all d > 0. Now taking d = (c‘” K c§")-- for all CV" K,C" > 0 we
have from (4.11)

h(c?) = sX.,CcV)

= s ((Cﬁ”T KtC§1)>_% KtC§1)> (chk.c)*
= s(p(k.C")) (MK, C)F .

Now for CVK,CM = 0, if we take h = 0, then (4. 6) is satisfied and we can
represent h by (4.9).

Since e, (C( )) is an equivariant predictor of &, ( C(l) C(2 ), it follows from
Lemma 4.1 and Lemma 4.2 that 6(C" )} is an equivariant predictor of £, (C c, c?)
under the group of transformations G if and only if

s(CcV) = ef (CV) + (V' K,CM)2s(p(K,CM)) (4.12)

for all Cﬁl).

Definition 4.1. An equivariant predictor 85o(CY of ¢, (CV, c?) is said to
be a best equivariant predictor under the loss L, if for every other equivariant
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predictor 6(C§1)) of 5,(C§”, sz)), Eg [La(&, ®;6) — La(&:, ®; 6p)] is nonnega-
tive definite.

Remark 4.1. Note that if 60(C§1)) is the best equivariant predictor of

§t(C§1),C§2) )} under the loss L,, then it is so under the loss Lj for every
n.n.d. w and vice versa.

We now establish that under the group of transformations G, e? (Cf”) is
best equivariant predictor of &(CEI), ng)) under the loss L.

Theorem 4.1. Consider the time domain HB model given in (2.1). Then
under the group of transformations G and the loss function L;, the best
equivariant predictor of &(CEI), sz)) is given by ef (Cgl)).

The proof of Theorem 4.1 is similar as Theorem 3 in Datta and Ghosh
(1991b), and is ommitted.

Remark 4.2. Although (Cfl)r Kthl))’iAt(l)TE[IIICF) is sufficient and p(K,C")
is ancillary, Basu’s theorem can not be applied since the sufficient statistics
is not complete.

5. APPENDIX
Proof of Theorem 2.1. The joint pdf of C,, a and R is given by

1
fle,o,r) o riNitbo)-lisy =2

x exp[-;:;{(c, — A E e - Aa) +a}].  (B.1)

Now
(c. — Awd) ] (¢, — Aso)
= la- (ATSA)ATE 0] (ATEA)
x[e — (ATE'A) AT S e) + 67 Qe - (5.2)
where

Q = T - A(ATE'A) AT
Integrating (5.1) w.r.t a, the joint pdf of C, and R .is' given by

~ 1
fle,r) x |Z, —%|At_Tz;1At| 2 p3(Netbo—p)-1 exp[—g(ao +¢,7Qicy))]. (5.3)
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Integrating (5.3) w.r.t R, the pdf of C, is given by

_L e -1 — LN, 4bg—
Fle) < 1B A S A (a0 + €7 Que)) 2N TP (5.4)
Now, using a standard formula for partitioned matrices, we have

_ 1T 1 2 1 -
czTEt ‘e, = CE ) Eulxcf ) + (C( ) 2t212tlllcg )) 2t212.1
a
x (€ — B, Ztet). (5.5)

Similarly

_ T
Ctht ‘A, = Ct(l) EtlllAsl) + (Cg EmEmA(l)) Zt221
x (e — E,ZIE[ﬁASI))
= slT + sg (say), (5.6)

A,TE;IA, = A, (I)TE_IA(I) +(A(2) EtzlztuA ) Et221
x (AP — 2,5, 1AM, (5.7)

Using the matrix inversion formula (see Exercise 2.9, page 33 of Rao (1973)),
we have from (5.7) that

(AT A,
T T -1 _ T
= AYTSHEAD) - A0 SAD) (AP - By 5lAlY)

-1
xG, (AP - B, 21 AV A,O B 1AW
= M, - M, (say) (5.8)

From (5.6), (5.8) and (2.4), we get after simplifications
TEAATETA) TTATE e,
= sTM;s;, — sTMys; + s M;s; — s) Mss; + 2s] (M) — My)s,, (5.9)

sTMys; = ¢V’ (251 - K,)el?, (5.10)

STMs; = (M) — B Zite) G (M — £ Biie”),  (5.11)
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"
SgMISQ = (ng) — Em):t"lllc,(l))
X [2:212‘1G12t_2;.1 - 2z-212 1]( - Emzmct ), (5.12)

T
s2 ‘Mys, = (ct - X z;lllcﬁ”) ‘
[2t22.1G¢2t_212.1 - 22;2;1 + Gt"l](c§2) - zmzmctn) (5.13)

T
s{Mis; = (Micl” — B Zpicl”) B34, (c? - By i), (5.14)

s Mzsz (Mtc - EmE,ucm)
[2122 1~ Gl_l](ct - Emzmc(l)) (5.15)

Using the same definition of Q,, it follows from (5.5)-(5.15) with some alge-
braic manipulations that

T
e’ Qe = eV Kiel + (e = M) G (e - M), (5.16)

Combining (5.4) and (5.16) and using the definition 6f multivariate t-distribution,
one gets Theorem 2.1.
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