• 제목/요약/키워드: Bessel multiplier

검색결과 3건 처리시간 0.02초

INVERTIBILITY OF GENERALIZED BESSEL MULTIPLIERS IN HILBERT C-MODULES

  • Tabadkan, Gholamreza Abbaspour;Hosseinnezhad, Hessam
    • 대한수학회보
    • /
    • 제58권2호
    • /
    • pp.461-479
    • /
    • 2021
  • This paper includes a general version of Bessel multipliers in Hilbert C∗-modules. In fact, by combining analysis, an operator on the standard Hilbert C∗-module and synthesis, we reach so-called generalized Bessel multipliers. Because of their importance for applications, we are interested to determine cases when generalized multipliers are invertible. We investigate some necessary or sufficient conditions for the invertibility of such operators and also we look at which perturbation of parameters preserve the invertibility of them. Subsequently, our attention is on how to express the inverse of an invertible generalized frame multiplier as a multiplier. In fact, we show that for all frames, the inverse of any invertible frame multiplier with an invertible symbol can always be represented as a multiplier with an invertible symbol and appropriate dual frames of the given ones.

BESSEL MULTIPLIERS AND APPROXIMATE DUALS IN HILBERT C -MODULES

  • Azandaryani, Morteza Mirzaee
    • 대한수학회지
    • /
    • 제54권4호
    • /
    • pp.1063-1079
    • /
    • 2017
  • Two standard Bessel sequences in a Hilbert $C^*$-module are approximately duals if the distance (with respect to the norm) between the identity operator on the Hilbert $C^*$-module and the operator constructed by the composition of the synthesis and analysis operators of these Bessel sequences is strictly less than one. In this paper, we introduce (a, m)-approximate duality using the distance between the identity operator and the operator defined by multiplying the Bessel multiplier with symbol m by an element a in the center of the $C^*$-algebra. We show that approximate duals are special cases of (a, m)-approximate duals and we generalize some of the important results obtained for approximate duals to (a, m)-approximate duals. Especially we study perturbations of (a, m)-approximate duals and (a, m)-approximate duals of modular Riesz bases.

Representation Theory of the Lie Group T3 and Three Index Bessel Functions

  • Pathan, Mahmood Ahmad;Shahwan, Mohannad Jamal Said
    • Kyungpook Mathematical Journal
    • /
    • 제53권1호
    • /
    • pp.143-148
    • /
    • 2013
  • The theory of generalized Bessel functions is reformulated within the framework of an operational formalism using the multiplier representation of the Lie group $T_3$ as suggested by Miller. This point of view provides more efficient tools which allow the derivation of generating functions of generalized Bessel functions. A few special cases of interest are also discussed.