• 제목/요약/키워드: Bentonite buffer

검색결과 136건 처리시간 0.02초

불포화토의 열·탄소성 거동 분석을 위한 Barcelona Basic Model 소개 (Introduction of Barcelona Basic Model for Analysis of the Thermo-Elasto-Plastic Behavior of Unsaturated Soils)

  • 이창수;윤석;이재원;김건영
    • 터널과지하공간
    • /
    • 제29권1호
    • /
    • pp.38-51
    • /
    • 2019
  • Barcelona Basic Model(BBM)은 응력의 변화에 따른 부피변화뿐만 아니라 흡입력의 변화에 따른 팽윤거동을 설명할 수 있으며, 흡입력 변화에 따른 점착력과 선행압밀응력의 변화와 온도변화에 따른 선행압밀응력의 변화를 고려할 수 있다. 따라서, 고준위방사성폐기물 처분시스템에서 공학적방벽재로 고려되고 있는 벤토나이트 완충재의 열-수리-역학적 복합거동을 예측 및 분석하는 것에 많이 활용되고 있다. 그러나 우리나라의 암반 및 지반 공학자들에게 잘 알려져 있지 않기 때문에 BBM을 소개하고자 한다. BBM은 불포화 토질의 역학적 거동을 모사하기 위해 Modified Cam Clay(MCC) 모델을 확장하여 만들어 졌기 때문에 본 고에서는 먼저 MCC 모델을 간략하게 소개하고, 열-탄소성 모델인 BBM을 상세히 소개하였다.

Effects of Temperature and Pressure on Quartz Dissolution

  • Choi, Jung-Hae;Chae, Byung-Gon;Kim, Hye-Jin
    • 지질공학
    • /
    • 제25권1호
    • /
    • pp.1-8
    • /
    • 2015
  • Deep geological disposal is the preferred storage method for high-level radioactive waste, because it ensures stable long-term storage with minimal potential for human disruption. Because of the risk of groundwater contamination, a buffer of steel and bentonite layers has been proposed to prevent the leaching of radionuclides into groundwater. Quartz is one of the most common minerals in earth's crust. To understand how deformation and dissolution phenomena affect waste disposal, here we study quartz samples at pressure, temperature, and pH conditions typical of deep geological disposal sites. We perform a dissolution experiment for single quartz crystals under different pressure and temperature conditions. Solution samples are collected and the dissolution rate is calculated by analyzing Si concentrations in a solution excited by inductively coupled plasma-atomic emission spectroscopy (ICP-AES). After completing the dissolution experiment, deformation of the quartz sample surfaces is investigated with a confocal laser scanning microscope (CLSM). An empirical formula is introduced that describes the relationship between dissolution rate, pressure, and temperature. These results suggest that bentonite layers in engineering barrier systems may be vulnerable to thermal deformation, even when exposed to higher temperatures on relatively short timescales.

A STUDY OF THE PRESSURE SOLUTION AND DEFORMATION OF QUARTZ CRYSTALS AT HIGH pH AND UNDER HIGH STRESS

  • Choi, Jung-Hae;Seo, Yong-Seok;Chae, Byung-Gon
    • Nuclear Engineering and Technology
    • /
    • 제45권1호
    • /
    • pp.53-60
    • /
    • 2013
  • Bentonite is generally used as a buffer material in high-level radioactive waste disposal facilities and consists of 50% quartz by weight. Quartz strongly affects the behavior of bentonite over very long periods. For this reason, quartz dissolution experiment was performed under high-pressure and high-alkalinity conditions based on the conditions found in a high-level radioactive waste disposal facility located deep underground. In this study, two quartz dissolution experiments were conducted on 1) quartz beads under low-pressure and high-alkalinity conditions and 2) a single quartz crystal under high-pressure and high-alkalinity conditions. Following the experiments, a confocal laser scanning microscope (CLSM) was used to observe the surfaces of experimental samples. Numerical analyses using the finite element method (FEM) were also performed to quantify the deformation of contact area. Quartz dissolution was observed in both experiments. This deformation was due to a concentrated compressive stress field, as indicated by the quartz deformation of the contact area through the FEM analysis. According to the numerical results, a high compressive stress field acted upon the neighboring contact area, which showed a rapid dissolution rate compared to other areas of the sample.

A Study on Thermal Load Management in a Deep Geological Repository for Efficient Disposal of High Level Radioactive Waste

  • Jongyoul Lee;Heuijoo Choi;Dongkeun Cho
    • 방사성폐기물학회지
    • /
    • 제20권4호
    • /
    • pp.469-488
    • /
    • 2022
  • Technology for high-level-waste disposal employing a multibarrier concept using engineered and natural barrier in stable bedrock at 300-1,000 m depth is being commercialized as a safe, long-term isolation method for high-level waste, including spent nuclear fuel. Managing heat generated from waste is important for improving disposal efficiency; thus, research on efficient heat management is required. In this study, thermal management methods to maximize disposal efficiency in terms of the disposal area required were developed. They efficiently use the land in an environment, such as Korea, where the land area is small and the amount of waste is large. The thermal effects of engineered barriers and natural barriers in a high-level waste disposal repository were analyzed. The research status of thermal management for the main bedrocks of the repository, such as crystalline, clay, salt, and other rocks, were reviewed. Based on a characteristics analysis of various heat management approaches, the spent nuclear fuel cooling time, buffer bentonite thermal conductivity, and disposal container size were chosen as efficient heat management methods applicable in Korea. For each method, thermal analyses of the disposal repository were performed. Based on the results, the disposal efficiency was evaluated preliminarily. Necessary future research is suggested.

지하수 용존 우라늄의 수착 및 침전 거동에서 수소 가스의 생지화학적 영향 (Biogeochemical Effects of Hydrogen Gas on the Behaviors of Adsorption and Precipitation of Groundwater-Dissolved Uranium)

  • 이승엽;이재광;서효진;백민훈
    • 자원환경지질
    • /
    • 제51권2호
    • /
    • pp.77-85
    • /
    • 2018
  • 원전 시설 주변 및 심지층 폐기물 처분장 인근 환경은 우라늄으로 오염될 가능성이 높으며, 오염된 우라늄은 지하수를 따라 먼 곳까지 이동 및 확산될 수 있다. 이러한 오염 우라늄의 이동 및 확산을 효과적으로 제어하기 위해서는 지하 환경에서 우라늄의 생지화학적 거동을 이해할 필요가 있다. 일반적으로 토양 및 지질 매체 내에 다양한 종류의 미생물이 생존하고 있으며, 이들의 활동은 핵종들의 산화 환원 반응 및 그에 따른 용해도 변화와 밀접히 연관되어 있다. 우리는 유기물 대신 수소 가스를 전자공여체로 사용하여 고체 매질에 대한 용존 우라늄의 수착 및 침전 거동을 살펴보았다. 화강암을 고체 매질로 사용한 회분식 실험에서는 수소의 영향이 관찰되지 않았으나, 벤토나이트를 사용한 조건에서는 수소의 영향으로 5~8% 우라늄 농도 감소가 관찰되었다. 이러한 결과는 벤토나이트 토착미생물이 수소를 전자공여체로 활용하여 우라늄 거동(감소)에 영향을 준 것으로 보인다. 또한, 폐기물 처분환경의 고열 및 고방사선 조건에서도 벤토나이트 토착미생물은 강한 내성을 보였으며, 이는 향후 자연산 벤토나이트가 처분장 완충재로 사용될 경우 핵종-생지화학 반응이 주요 기작 중의 하나가 될 것으로 예상된다.

역학손상모델을 이용한 1차원 기체 주입 시험 모델링: 국제공동연구 DECOVALEX-2019 Task A Stage 1A (Numerical Modelling of One Dimensional Gas Injection Experiment using Mechanical Damage Model: DECOVALEX-2019 Task A Stage 1A)

  • 이재원;이창수;김건영
    • 터널과지하공간
    • /
    • 제29권4호
    • /
    • pp.262-279
    • /
    • 2019
  • 고준위방사성폐기물처분장의 공학적 방벽에서는 다양한 원인으로 인해 기체가 발생한다. 만약 기체 생성 속도가 기체 확산 속도보다 빠를 경우 기체의 압력이 증가하게 되고, 기체 유입 압력(gas entry pressure)을 넘어서게 되면 기체가 급격히 벤토나이트 완충재를 통과하는 기체 이동 현상(gas migration)이 발생하게 되며 이는 사람과 주변 환경을 방사능에 노출시킬 수 있기 때문에, 공학적 방벽의 장기 건전성 확보 측면에서 기체 이동 현상을 명확히 규명하는 것이 매우 중요하다. 특히 벤토나이트 완충재와 같이 점토 물질을 다량 함유한 매질에서만 나타나는 매우 중요한 기체 흐름 현상인 팽창 흐름에 대한 수리-역학적 메커니즘을 규명하고, 기체 이동 현상의 정량적 평가를 위한 새로운 수치 해석 기법 개발 및 검증이 필수적이다. 따라서 본 연구에서는 공학적 방벽에서의 기체 이동 현상을 모사하고자 역학 손상 모델 및 손상도를 고려한 2상 유동 모델을 개발하였으며, 일정 체적 경계 조건 하에서의 1차원 기체 주입 시험 모사를 통해 개발된 모델의 적용성을 검토하였다. 수치 해석 결과 공극 수압 및 응력, 기체 유출량이 팽창 흐름 발생 시 급격히 증가하는 현상을 모사할 수 있었다.

TOUGH2-MP/FLAC3D를 이용한 한국형 기준 처분시스템에서의 열-수리-역학적 복합거동 특성 평가 (Numerical Analysis of Coupled Thermo-Hydro-Mechanical (THM) Behavior at Korean Reference Disposal System (KRS) Using TOUGH2-MP/FLAC3D Simulator)

  • 이창수;조원진;이재원;김건영
    • 방사성폐기물학회지
    • /
    • 제17권2호
    • /
    • pp.183-202
    • /
    • 2019
  • 고준위방사성폐기물의 처분터널 및 처분공 간격을 결정하고 처분시스템의 성능을 평가하기 위해서는 열-수리-역학적인 복합 거동 변화에 대한 이해가 반드시 필요하고 이를 반영하여 해석해야만 한다. 하지만 한국형 기준 처분시스템에서의 처분터널 및 처분공 간격을 결정하기 위해 수행된 기존의 연구들은 이러한 복합거동 특성을 반영하지 않고 열 해석 결과만을 근거로 처분시스템을 설계하였다. 따라서 본 연구에서는 열-수리-역학적인 복합거동 특성을 반영하여 한국형 기준 처분시스템의 성능을 TOUGH2-MP/FLAC3D를 이용하여 평가하였다. 고준위방사성폐기물이 처분된 이후 방사성 붕괴열에 의해 처분시스템의 온도는 급격히 증가하다가 붕괴열의 감소로 온도는 서서히 감소하였으며, 해석 기간 1,000년 동안 벤토나이트 완충재의 최고 온도는 설계 기준인 $100^{\circ}C$ 이하로 유지되는 것으로 나타났다. 처분용기와 벤토나이트 완충재의 계면에서의 최고 온도는 약 3.21년이 지난 시점에 용기의 중간 지점에서 약 $96.2^{\circ}C$로 나타났으며, 암반에서의 최고 온도는 폐쇄 후 약 17년이 지난 시점에서 약 $68.2^{\circ}C$로 계산되었다. 처분용기 부근 벤토나이트 완충재는 처분 초기에 온도 변화에 따른 건조현상이 발생하여 포화도가 감소하지만, 시간이 지남에 따라 주변 암반으로부터의 지하수 유입에 의해 포화도가 증가하는 것으로 계산되었다. 이후, 벤토나이트 완충재 및 뒷채움재 모두 약 266년 이후 완전히 포화되는 것으로 계산되었다. 처분시스템에서의 온도 변화에 따른 열응력 그리고 벤토나이트 완충재 및 뒷채움재의 팽윤압으로 인한 응력 변화가 처분장 주변 암반에 미치는 영향을 평가하고자 수치해석에서 계산된 응력을 스폴링 강도(spalling strength)와 Mohr-coulomb 파괴 기준식과 비교하였다. 계산 결과 일축압축강도와 스폴링 강도에 도달하지 않는 것으로 나타나 처분시스템이 스폴링에 의한 파괴는 나타나지 않을 것으로 판단되며, Mohr-coulomb 파괴 기준 역시 충족하는 것으로 나타났다. 본 연구에서 사용된 수치해석 코드와 방법론은 다양한 조건에서의 한국형 기준 처분시스템에 대한 성능평가뿐만 아니라, 복층 처분시스템에 대한 설계와 성능평가에 활용될 수 있을 것으로 판단된다.

고준위 방사성 폐기물 처분 시스템 실증 실험용 KENTEX 장치에서의 열-수리-역학 연동현상 해석 (Coupled T-H-M Processes Calculations in KENTEX Facility Used for Validation Test of a HLW Disposal System)

  • 박정화;이재완;권상기;조원진
    • 방사성폐기물학회지
    • /
    • 제4권2호
    • /
    • pp.117-131
    • /
    • 2006
  • 한국의 고준위폐기물 기준 처분 시스템의 공학적 방벽에서의 T-H-M(Thermo-Hydro-Mechanical) 거동 실증을 위한 KENTEX(KAERI Engineering-scale T-H-M Experiment for Engineered Barrier System)실험 장치를 대상으로 열-수리-역학 연동현상 해석을 하여 온도, 포화도 및 응력의 변화를 예측하였다. 그리고 이들 변수와 열-수리-역학의 연동현상에 사용된 세물성법칙인 탄성물성법칙, 공극탄성 물성법칙 및 공극탄성-소성 물성법칙과의 관계를 분석하였다. 열-수리-역학 연동현상을 계산하는 데는 상용 유한요소 코드인 ABAQUS를 사용하였다. 열 계산에서 벤토나이트 내 온도는 히터 가열 후 초기에는 급격히 증가하다가 얼마의 시간이 경과한 후에는 거의 일정한 값에 도달하였다. 이 도달시간은 약 37.5일로 반경방향의 모든 지점(H=0.68m 일때)에서 정상상태에 도달한 것을 알 수 있었다. 즉, 히터와 벤토나이트 경계면에서는 $90^{\circ}C$, 벤토나이트와 외부 셀 경계면에서는 약 $70^{\circ}C$를 유지하였다. 열-수리-역학 연동현상 계산에서 시간에 따른 벤토나이트 포화도는 탄성 물성법칙, 공극탄성 물성법칙 및 공극탄성-소성 물성법칙의 세 경우 모두 거의 차이가 없었다. 열-수리-역학 계산 결과와 수리-역학 계산 결과의 비교에서 온도의 증가는 탄성 물성법칙 및 공극탄성 물성법칙 각각에 대해 시간이 경과함에 따라 포화도가 증가함을 초래해 포화가 빨리 진행됨을 알 수 있었다. 특히 히터에 가까운 쪽에서는물이 침투하고 있는 쪽 보다 포화도 증가가 큰 것으로 나타나 벤토나이트가 물로 포화되기 전의초기상태가 온도의 영향을 많이 받는 것을 알 수 있었다. 또한 응력은 세 물성 법칙 모두 시간의 경과에 따라 증가하는 경향을 보이나 탄성 물성법칙의 경우가 다른 두 경우보다 현저한 변화를 보이는데 이는 변형율이 탄성한계를 넘어서도 계속 작용하여 공극비 변화를 고려한 다른 두 물성법칙과 차이가 있음을 나타내고 있다. 그러나 공극탄성 물성법칙 및 공극탄성-소성 물성법칙의 경우에 열-수리-역학 계산 결과와 수리-역학 계산 결과를 비교하면 시간이 경과함에 따라 응력은 증가하지만 온도의 변화에 따른 서로의 응력의 차이는 작은 것을 알 수 있다. 즉 온도변화의 영향보다는 시간에 따른 포화도 변화의 영향이 더 큰 것으로 생각된다. 따라서 벤토나이트의 열-수리-역학 연동현상 해석에서 벤토나이트는 온도의 증가로 포화가 빨라지고, 포화도 증가는 응력을 증가시키는 결과를 보이므로 공극비, 열팽창 및 팽윤압 등의 영향을 받고 있는 것으로 이해된다. 그래서 벤토나이트의 열-수리-역학 연동현상 해석에서 벤토나이트는 공극비, 열팽창 및 팽윤압 등의 영향을 받으므로 탄성과 소성을 동시에 고려할 수 있는 물성법칙을 선택하는 것이 바람직하다.

  • PDF

스위스 Grimsel Test Site에서 수행된 FEBEX 현장시험에 대한 수치해석적 연구 (Numerical analysis of FEBEX at Grimsel Test Site in Switzerland)

  • 이창수;이재원;김건영
    • 터널과지하공간
    • /
    • 제30권4호
    • /
    • pp.359-381
    • /
    • 2020
  • 벤토나이트 완충재에서의 열-수리-역학적 복합거동을 예측하기 위해 TOUGH2-MP/FLAC3D 시뮬레이터를 기반으로 개발된 Barcelona basic 모델(BBM) 해석모듈의 현장 적용성을 검토하고자 국제공동연구 DECOVALEX-2019 Task D에 참여하여 스위스 Grimsel Test Site의 현장시험(full-scale engineered barriers experiment, FEBEX) 모델링을 수행하고 현장시험에서 계측된 히터 파워, 온도, 상대습도, 응력, 포화도, 함수율 그리고 건조밀도를 계산 값과 비교하였다. 수치해석을 이용하여 시간에 따른 히터 파워와 온도 변화는 전반적으로 잘 재현되었지만, 히터 1과 히터 2에서의 파워 차이를 계산할 수는 없었으며 이를 개선하기 위해서는 FEBEX 터널 주변에 분포하는 황반암과 시험장치 및 벤토나이트 블록의 설치 공정을 반영할 필요가 있을 것으로 판단된다. 상대습도 변화와 분포 역시 전반적으로 잘 모사되었으나, 수치해석에서 히터 부근에서의 재포화과정이 상대적으로 빠르게 진행된 것으로 보아 수리모델에 대한 일부 수정이 필요할 것으로 보인다. 현장시험에서는 벤토나이트 완충재와 암반 사이에 틈이 존재하지만 수치해석에서는 완벽하게 접촉하고 있는 것으로 가정하였기 때문에 운영 초기의 응력 변화는 다소 차이를 보였지만, 전반적으로 유사한 경향을 보이는 것으로 나타났다. 해체 이후 측정한 포화도, 함수율, 그리고 건조밀도의 분포 역시 전반적으로 잘 재현되었지만, 건조밀도가 터널 중심과 히터부근에서 조금 크게 계산되어 벤토나이트 블록의 투수계수가 상대적으로 작은 값으로 반영되어 포화도와 함수율이 작게 계산된 것으로 보이며, 이를 개선하기 위해서는 건조밀도에 따른 투수계수 모델에 일부 수정이 필요할 것으로 판단된다. 본 연구의 결과를 토대로 수치모델을 수정하고 추가적인 연구를 수행한다면, 보다 나은 해석 결과와 벤토나이트 완충재에서의 THM 복합거동을 좀 더 현실적으로 예측할 수 있을 것으로 판단된다.

고준위폐기물처분시스템 공학적 방벽에서의 지하수 포화공정 해석 (An Analysis of the Water Saturation Processes in the Engineered Barrier of a High Level Radioactive Waste Disposal System)

  • 박정화;이재완;권상기
    • 방사성폐기물학회지
    • /
    • 제9권1호
    • /
    • pp.23-32
    • /
    • 2011
  • 한국형 기준 처분시스템의 공학적 방벽에서의 열-수리-역학 복합 현상을 실증하기 위한 공학적 규모 실증실험 장치인 KENTEX에서 얻은 열, 수리, 역학적 실험 데이터를 이용하여 벤토나이트의 포화공정을 해석하였다. ABAQUS를 사용한 모델계산의 함수율과 실험 결과의 비교에서 불포화 영역에서는 온도상승으로 인해 초기 수분이 감소하는 수분 재분포 공정을 모델에 포함시키지 않아 함수율의 차가 컸다. 포화 영역에서는 실험에서 초기 수분보다 낮은 함수율에서부터 지하수로 포화가 진행되지만 모델과 실험에서 얻은 함수율 값의 차이가 점점 감소해 완전포화에 도달할 때에는 두 함수율 값이 거의 비슷한 결과를 보여주였다. 포화도 약 95%에 이르는 시간은 실험결과와 계산 결과가 서로 비슷한 약 500일 정도로 예측할 수 있었다. 그리고 불포화 영역의 수분 재분포가 벤토나이트의 완전포화에 도달하는 시간에는 큰 영향을 미치지 않는 것으로 분석되었다. 따라서 본 해석기법을 사용하면 지하처분연구시설의 완충재인 벤토나이트의 포화시간을 예측할 수 있을 것으로 판단된다.