DOI QR코드

DOI QR Code

Numerical analysis of FEBEX at Grimsel Test Site in Switzerland

스위스 Grimsel Test Site에서 수행된 FEBEX 현장시험에 대한 수치해석적 연구

  • Received : 2020.08.13
  • Accepted : 2020.08.25
  • Published : 2020.08.31

Abstract

Within the framework of DECOVALEX-2019 Task D, full-scale engineered barriers experiment (FEBEX) at Grimsel Test Site was numerically simulated to investigate an applicability of implemented Barcelona basic model (BBM) into TOUGH2-MP/FLAC3D simulator, which was developed for the prediction of the coupled thermo-hydro-mechanical behavior of bentonite buffer. And the calculated heater power, temperature, relative humidity, total stress, saturation, water content and dry density were compared with in situ data monitored in the various sections. In general, the calculated heater power and temperature provided a fairly good agreement with experimental observations, however, the difference between power of heater #1 and that of heater #2 could not captured in the numerical analysis. It is necessary to consider lamprophyre with low thermal conductivity around heater #1 and non-simplified installation progresses of bentonite blocks in the tunnel for better modeling results. The evolutions and distributions of relative humidity were well reproduced, but hydraulic model needs to be modified because the re-saturation process was relatively fast near the heaters. In case of stress evolutions due to the thermal and hydraulic expansions, the computed stress was in good agreement with the data. But, the stress is slightly higher than the measured in situ data at the early stage of the operation, because gap between rock mass and bentonite blocks have not been considered in the numerical simulations. The calculated distribution of saturation, water content, and dry density along the radial distance showed good agreement with the observations after the first and final dismantling. The calculated dry density near the center of the FEBEX tunnel and heaters were overestimated compared with the observations. As a result, the saturation and water content were underestimated with the measurements. Therefore, numerical model of permeability is needed to modify for the production of better numerical results. It will be possible to produce the better analysis results and more realistically predict the coupled THM behavior in the bentonite blocks by performing the additional studies and modifying the numerical model based on the results of this study.

벤토나이트 완충재에서의 열-수리-역학적 복합거동을 예측하기 위해 TOUGH2-MP/FLAC3D 시뮬레이터를 기반으로 개발된 Barcelona basic 모델(BBM) 해석모듈의 현장 적용성을 검토하고자 국제공동연구 DECOVALEX-2019 Task D에 참여하여 스위스 Grimsel Test Site의 현장시험(full-scale engineered barriers experiment, FEBEX) 모델링을 수행하고 현장시험에서 계측된 히터 파워, 온도, 상대습도, 응력, 포화도, 함수율 그리고 건조밀도를 계산 값과 비교하였다. 수치해석을 이용하여 시간에 따른 히터 파워와 온도 변화는 전반적으로 잘 재현되었지만, 히터 1과 히터 2에서의 파워 차이를 계산할 수는 없었으며 이를 개선하기 위해서는 FEBEX 터널 주변에 분포하는 황반암과 시험장치 및 벤토나이트 블록의 설치 공정을 반영할 필요가 있을 것으로 판단된다. 상대습도 변화와 분포 역시 전반적으로 잘 모사되었으나, 수치해석에서 히터 부근에서의 재포화과정이 상대적으로 빠르게 진행된 것으로 보아 수리모델에 대한 일부 수정이 필요할 것으로 보인다. 현장시험에서는 벤토나이트 완충재와 암반 사이에 틈이 존재하지만 수치해석에서는 완벽하게 접촉하고 있는 것으로 가정하였기 때문에 운영 초기의 응력 변화는 다소 차이를 보였지만, 전반적으로 유사한 경향을 보이는 것으로 나타났다. 해체 이후 측정한 포화도, 함수율, 그리고 건조밀도의 분포 역시 전반적으로 잘 재현되었지만, 건조밀도가 터널 중심과 히터부근에서 조금 크게 계산되어 벤토나이트 블록의 투수계수가 상대적으로 작은 값으로 반영되어 포화도와 함수율이 작게 계산된 것으로 보이며, 이를 개선하기 위해서는 건조밀도에 따른 투수계수 모델에 일부 수정이 필요할 것으로 판단된다. 본 연구의 결과를 토대로 수치모델을 수정하고 추가적인 연구를 수행한다면, 보다 나은 해석 결과와 벤토나이트 완충재에서의 THM 복합거동을 좀 더 현실적으로 예측할 수 있을 것으로 판단된다.

Keywords

References

  1. Alonso, E.E., A. Gens and A. Josa, 1990, A constitutive model for partially saturated soils. Geotechnique, 40(3), 405-430. https://doi.org/10.1680/geot.1990.40.3.405
  2. Barcena, I., J.-L. Fuentes-Cantillana and J.L. Garcia-Sineriz, 2003, Dismantling of heater No. 1 at the FEBEX in situ test. Description of operations. DRAFT. AITEMIN
  3. Berg, H.P. and P. Brennecke, 2013, Management of nuclear-related research and development (R&D), in: Devgun, J. (Ed.), Managing Nuclear Projects: A Comprehensive Management Resource. Woodhead Publishing Limited, 152-174.
  4. Cho, W.J., 2017, Radioactive Waste Disposal, KAERI report GP-495/2017, KAERI.
  5. CODE BRIGHT, 2004, A 3D program for thermo-hydro-mechanical analysis in geological media manual. Barcelona: UPC.
  6. ENRESA, 2000, FEBEX project. Full-scale engineered barriers experiment for a deep geological repository for high level radioactive waste in crystalline host rock. Final report. ENRESA, Madrid.
  7. Garitte, B., A. Gens, J. Vaunat and G. Armand, 2014, Thermal conductivity of argillaceous rocks: Determination methodology using in situ heating tests. Rock Mech Rock Eng. 47(1), 111-129. https://doi.org/10.1007/s00603-012-0335-x
  8. Gens, A., M. Sanchez, L.D.N. Guimaraes, E.E. Alonso, A. Lloret, S. Olivella, M.V. Villar and F. Huertas, 2009, A full-scale in situ heating test for high-level nuclear waste disposal: Observations, analysis and interpretation. Geotechnique. 59(4), 377-399. https://doi.org/10.1680/geot.2009.59.4.377
  9. Gens, A., 2017, DECOVALEX 2019 Task D: HM and THM Interactions in Bentonite Engineered Barriers (INBEB), Stage 2: Post-dismantling period of the EB experiment. Task description of Task D.
  10. Gens, A., 2018a, DECOVALEX 2019 Task D: HM and THM Interactions in Bentonite Engineered Barriers (INBEB), Stage 3: Modelling of the FEBEX in situ test during the first 5 years pf heating up to and including first dismantling. Task description of Task D.
  11. Gens, A., 2018b, HM and THM INteractions in Bentonite Engineered Barriers Stages 3 and 4: The FEBEX experiment Synthesis and Discussion. 6th Workshop & Steering Committee Meeting of DECOVALEX-2019. Seoul. Korea.
  12. Gens, A., 2019, HM and THM INteractions in Bentonite Engineered Barriers Stages 3 and 4: The FEBEX experiment Synthesis and Discussion. 7th Workshop & Steering Committee Meeting of DECOVALEX-2019. Prague. Czech Republic.
  13. Itasca, 2012, FLAC3D - Fast Largrangian Analysis of Continua. 5.0 ed. Minneapolis: Itasca Consulting Group.
  14. Keusen, H.R., J. Ganguin, P. Schuler and M. Buletti, 1989, Grimsel Test Site. Geology. NAGRA, NTB 87-14E, Feb. 1989.
  15. Lee, C., S. Yoon, J. Lee and G.Y. Kim, 2019, Introduction of Barcelona Basic Model for Analysis of the Thermo-Elasto-Plastic Behavior of Unsaturated Soils. TUNNEL & UNDERGROUND SPACE, 29(1), 38-51. https://doi.org/10.7474/TUS.2019.29.1.038
  16. Lee, C., J. Lee, M. Kim and G.Y. Kim, 2020a, Implementation of Barcelona Basic Model into TOUGH2-MP/FLAC3D. TUNNEL & UNDERGROUND SPACE, 30(1), 39-62. https://doi.org/10.7474/TUS.2020.30.1.039
  17. Lee, C., J. Lee and G.Y. Kim, 2020b, FINAL MODELLING REPORT BY KAERI. In A. Gens. DECOVALEX-2019 Task D: INBEB Final Report. ANNEX H, LBNL report, LBNL-20011267.
  18. Lee, C., J. Lee, S. Park, S. Kwon, W.-J. Cho and G.Y. Kim, 2020c, Numerical analysis of coupled thermo-hydro-mechanical behavior in single- and multi-layer repository concepts for high-level radioactive waste disposal, Tunnelling and Underground Space Technology, 103, 103452. https://doi.org/10.1016/j.tust.2020.103452
  19. Papafotiou, A., C. Li and F. Kober, 2017, Pre-dismantling THM modelling of the FEBEX in situ experiment, Nagra Arbeitsbericht NAB 16-22.
  20. Pruess, K., C. Oldenburg and G. Moridis, 1999, TOUGH2 User's Guide, Version 2.0, Lawrence Berkeley National Laboratory Report LBNL-43134.
  21. Rutqvist, J., Y.-S. Wu, C.-F. Tsang and G. Bodvarsson, 2002, A modeling approach for analysis of coupled multiphase fluid flow, heat transfer, and deformation in fractured porous rock. Int J Rock Mech Min Sci. 39(4), 429-442. https://doi.org/10.1016/S1365-1609(02)00022-9
  22. Sanchez, M., A. Gens and L. Guimaraes, 2012, Thermal-hydraulic-mechanical (THM) behaviour of a large-scale in situ heating experiment during cooling and dismantling. Can Geotech J. 49(10), 1169-1195. https://doi.org/10.1139/t2012-076
  23. SKB, 2008, Horizontal deposition of canisters for spent nuclear fuel - Summary of the KBS-3H Project 2004-2007, SKB report TR-08-03, Svensk Karnbranslehantering AB.
  24. SKB, 2010, Choice of method - evaluation of strategies and systems for disposal of spent nuclear fuel, SKB report P-10-47, Svensk Karnbranslehantering AB.
  25. Vargaftik, N.B., 1975, Tables on the Thermophysical Properties of Liquids and Gases. 2nd Ed. John Wiley & Sons, New York. NY.
  26. Villar, M.V., 2017, FEBEX-DP Post-mortem THM/THG Analysis Report, Nagra Arbeitsbericht NAB 16-17.
  27. Villar, M.V., R.J. Iglesias, J.L. Garcia-Sineriz, A. Lloret and F. Huertas, 2020, Physical evolution of a bentonite buffer during 18 years of heating and hydration. Eng Geol. 264, 105408. https://doi.org/10.1016/j.enggeo.2019.105408
  28. Walker, W.R., J.D. Sabey and D.R. Hampton, 1981, Studies of Heat Transfer and Water Migration in Soils. Final Report. Department of Agricultural and Chemical Engineering. Colorado State University. Fort Collins. CO. 80523.
  29. Zhang, K., Y.-S. Wu and K. Pruess, 2008, User's Guide for TOUGH2-MP - A Massively Parallel Version of the TOUGH2 Code. Earth Sciences Division Lawrence Berkeley National Laboratory.