Browse > Article
http://dx.doi.org/10.9719/EEG.2018.51.2.77

Biogeochemical Effects of Hydrogen Gas on the Behaviors of Adsorption and Precipitation of Groundwater-Dissolved Uranium  

Lee, Seung Yeop (Korea Atomic Energy Research Institute)
Lee, Jae Kwang (Korea Atomic Energy Research Institute)
Seo, Hyo-Jin (Korea Atomic Energy Research Institute)
Baik, Min Hoon (Korea Atomic Energy Research Institute)
Publication Information
Economic and Environmental Geology / v.51, no.2, 2018 , pp. 77-85 More about this Journal
Abstract
There would be a possibility of uranium contamination around the nuclear power plants and the underground waste disposal sites, where the uranium could further migrate and diffuse to some distant places by groundwater. It is necessary to understand the biogeochemical behaviors of uranium in underground environments to effectively control the migration and diffusion of uranium. In general, various kinds of microbes are living in soils and geological media where the activity of microbes may be closely connected with the redox reaction of nuclides resulting in the changes of their solubility. We investigated the adsorption and precipitation behaviors of dissolved uranium on some solid materials using hydrogen gas as an electron donor instead of organic matters. Although the effect of hydrogen gas did not appear in a batch experiment that used granite as a solid material, there occurred a reduction of uranium concentration by 5~8% due to hydrogen in an experiment using bentonite. This result indicates that some indigenous bacteria in the bentonite that have utilized hydrogen as the electron donor affected the behavior (reduction) of uranium. In addition, the bentonite bacteria have showed their strong tolerance against a given high temperature and radioactivity of a specific waste environment, suggesting that the nuclear-biogeochemical reaction may be one of main mechanisms if the natural bentonite is used as a buffer material for the disposal site in the future.
Keywords
uranium; biogeochemical; microbes; hydrogen gas; bentonite;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
연도 인용수 순위
1 Abedini, A., Daud, A.R., Hamid, M.A.A. and Othman, N.K. (2014) Radiolytic formation of $Fe_3O_4$ nanoparticles: influence of radiation dose on structure and magnetic properties. Plos One, v.9, p.90055.   DOI
2 Allard, Th. and Calas, G. (2009) Radiation effects on clay mineral properties. Applied Clay Science, v.43, p.143-149.   DOI
3 Anderson, R.T., Vrionis, H.A., Ortiz-Bernad, I., Resch, C.T., Long, P.E., Dayvault, R., Karp, K., Marutzky, S., Metzler, D.R., Peacock, A., White, D.C., Lowe, M. and Lovley, D.R. (2003) Stimulating the in situ activity of Geobacter species to remove uranium from the groundwater of a uranium-contaminated aquifer. Applied and Environmental Microbiology, v.69, p.5884-5891.   DOI
4 Baik, M.H., Lee, S.Y. and Shon, W.J. (2009) Retention of uranium(VI) by laumontite, a fracture-filling material of granite. Journal of Radioanalytical and Nuclear Chemistry, v.280, p.69-77.   DOI
5 Barton, L.L. and Hamilton, W.A. (2007) Sulphatereducing bacteria. Cambridge University Press, 533p.
6 Cho, D.K., Lee, S.W., Cha, J.H., Choi, J., Lee, Y. and Choi, H.J. (2008) Current status and characterization of CANDU spent fuel for geological disposal system design. Journal of the Korean Radioactive Waste Society, v.6, p.155-162.
7 Choi, H.J., Lee, J.Y. and Choi, J.W. (2013) Development of geological disposal systems for spent fuels and highlevel radioactive wastes in Korea. Nuclear Engineering and Technology, v.45, p. 29-40.   DOI
8 Fredrickson, J.K., Zachara, J.M., Kennedy, D.W., Liu, C., Duff, M.C., Hunter, D.B. and Dohnalkova, A. (2002) Influence of Mn oxides on the reduction of uranium(VI) by the metal-reducing bacterium Shewanella putrefaciens. Goechimica et Cosmochimica Acta, v.66, p.3247-3262.   DOI
9 Hyun, S.P., Davis, J.A., Sun, K. and Hayes, K.F. (2012) Uranium(VI) reduction by iron(II) monosulfide mackinawite. Environmental Science and Technology, v.46, p.3369-3376.   DOI
10 Ilton, E.S., Haiduc, A., Moses, C.O., Heald, S.M., Elbert, D.C. and Veblen, D.R. (2004) Heterogeneous reduction of uranyl by micas: crystal chemical and solution controls. Geochimica et Cosmochimica Acta, v.68, p.2417-2435.   DOI
11 Lee, S.Y., Baik, M.H. and Lee, Y.B. (2009a) Adsorption of uranyl ions and microscale distribution on Fe-bearing mica. Applied Clay Science, v.44, p.259-264.   DOI
12 Lee, S.Y., Baik, M.H., Lee, Y.J. and Lee, Y.B. (2009b) Adsorption of U(VI) ions on biotite from aqueous solutions. Applied Clay Science, v.46, p.255-259.   DOI
13 Lee, S.Y., Lee, J.Y., Jeong, J. and Kim, K. (2014a) Characteristics for the copper exchange reaction by bentonite buffer. Journal of the Mineralogical Society of Korea, v.27, p.293-299.   DOI
14 Lee, S.Y., Baik, M.H. and Choi, J.W. (2010) Biogenic formation and growth of uraninite ($UO_2$). Environmental Science and Technology, v.44, p.8409-8414.   DOI
15 Lee, J.Y., Lee, S.Y., Baik, M.H. and Jeong, J.T. (2013a) Existence and characteristics of microbial cells in the bentonite to be used for a buffer material of high-level wastes. Journal of the Korean Radioactive Waste Society, v.11, p.95-102.   DOI
16 Lee, S.Y., Baik, M.H., Cho, H.R., Jung, E.C., Jeong, J.T., Choi, J.W., Lee, Y.B. and Lee, Y.J. (2013b) Abiotic reduction of uranium by mackinawite (FeS) biogenerated under sulfate-reducing condition. Journal of Radioanalytical and Nuclear Chemistry, v.296, p.1311-1319.   DOI
17 Lee, S.Y., Cha, W.S. Kim, J.G., Baik, M.H., Jung, E.C., Jeong, J.T., Kim, K., Chung, S.Y. and Lee, Y.J. (2014b) Uranium(IV) remobilization under sulfate reducing conditions. Chemical Geology, v.370, p.40-48.   DOI
18 Lee, S.Y., Baik, M.H., Cha, W. and Ryu, J.H. (2016a) Biogeochemical activity of indigenous bacteria in KURT deep-fracture and subsequent change of adsorption behavior characteristics of radioactive uranium. Journal of the Korean Society of Mineral and Energy Resources Engineers, v.53, p.452-462.
19 Liger, E., Charlet, L. and Capellen, P.V. (1999) Surface catalysis of uranium(VI) reduction by iron(II). Geochimica et Cosmochimica Acta, v.63, p.2939-2955.   DOI
20 Lee, J.K., Lee, S.Y., Jeong, J. and Baik, M.H. (2016b) Effects of gamma irradiation and Shewanella putrefaciens on the sorption of uranium by goethite. Journal of Radioanalytical and Nuclear Chemistry, v.307, p.2301-2306.   DOI
21 Lovley, D.R., Phillips, E.J.P., Gorby, Y.A. and Landa, E.R. (1991) Microbial reduction of uranium. Nature, v.350, p.413-416.   DOI
22 Lovley, D.R. and Phillips, E.J.P. (1992) Reduction of uranium by Desulfovibrio desulfuricans. Applied Environmental Microbiology, v.58, p.850-856.
23 Um, W., Serne, R.J. and Krupka, K.M. (2007) Surface complexation modeling of U(VI) sorption to Hanford sediment with varying geochemical conditions. Environmental Science and Technology, v.41, p.3587-3592.   DOI
24 Masurat, P., Eriksson, S. and Pedersen, K. (2010) Evidence of indigenous sulphate-reducing bacteria in commercial Wyoming bentonite MX-80. Applied Clay Science, v.47, p.51-57.   DOI
25 Oh, J.M., Lee, S.Y., Baik, M.H. and Roh, Y. (2010) Characterization of uranium removal and mineralization by bacteria in deep underground, Korea Atomic Energy Research Institute (KAERI). Journal of the Mineralogical Society of Korea, v.23, p.107-115.
26 Ulrich, K.U., Singh, A., Schofield, E.J., Bargar, J.R., Veeramani, H., Sharp, J.O., Bernier-Latmani, R. and Giammar, D.E. (2008) Dissolution of biogenic and synthetic $UO_2$ under varied reducing conditions. Environmental Science and Technology, v.42, p.5600-5606.   DOI
27 Wersin, P., Hochella, M.F., Person, P., Redden, G., Leckie, J.O. and Harris, D.W. (1994) Interaction between aqueous uranium(VI) and sulfide minerals: spectroscopic evidence for sorption and reduction. Geochimica et Cosmochimica Acta, v.58, p.2829-2843.   DOI
28 Wu, L., Beauregard, Y., Qin, Z., Rohani, S. and Shoesmith, D.W. (2012) A model for the influence of steel corrosion products on nuclear fuel corrosion under permanent disposal conditions. Corrosion Science, v.61, p.83-91.   DOI
29 Wielinga, B., Bostick, B., Hansel, C.M., Rosenzweig, R.F. and Fendorf, S. (2000) Inhibition of bacterially promoted uranium reduction: Ferric (hydr)oxides as competitive electron acceptors. Enviromental Science and Technology, v.34, p.2190-2195.   DOI