• Title/Summary/Keyword: Bending Stiffness

Search Result 1,058, Processing Time 0.028 seconds

Performance of IPS Earth Retention System in Soft Clay (연약지반에 적용된 IPS 흙막이 시스템의 거동 특성)

  • Kim, Nak-Kyung;Park, Jong-Sik;Oh, Hee-Jin;Han, Man-Yop;Kim, Moon-Young;Kim, Sung-Bo
    • Journal of the Korean Geotechnical Society
    • /
    • v.23 no.3
    • /
    • pp.5-13
    • /
    • 2007
  • The performance of innovative prestressed support (IPS) earth retention system applied in soft clay was investigated and presented. The IPS wale system provides a high flexural stiffness to resist the bending by lateral earth pressure, and transfers lateral earth pressure to strut supports. The IPS wale system provides a larger spacing of support than conventional braced and anchored systems. The IPS earth retention system was selected for temporary earth support in a building construction in North Busan area. The excavation was made 28.8 m wide, 52.0 m long, and 16.1 m deep through loose fill to soft clay. The IPS system consists of 650 mm thick slurry walls, and five levels of IPS wales and struts. Field monitoring data were collected including wall deflections at six locations, ground water levels at four locations, IPS wale deflections at thirty locations, and axial loads on struts at twenty locations, during construction. The IPS earth retention system applied in soft clay performed successfully within a designed criterion. Field measurements were compared with design assumptions of the IPS earth retention system. The applicability and stability of the IPS earth retention system in soft clay were investigated and evaluated.

Experimental Study on Flexural Behavior of RC Beams Strengthened with Prestressed CFRP Plate (CFRP판으로 프리스트레싱 보강한 RC 보의 휨거동에 관한 실험적 연구)

  • Han, Sang-Hoon;Hong, Ki-Nam;Kim, Hyung-Jin;Woo, Sang-Kyun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.2A
    • /
    • pp.301-310
    • /
    • 2006
  • Carbon fiber reinforced polymer (CRFP) materials are well suited to the rehabilitation of civil engineering structures due to their corrosion resistance, high strength to weight ratio and high stiffness to weight ratio. Their application in the field of the rehabilitation of concrete structures is increased due to the vast number of bridges and buildings in need of strengthening. However, RC members, strengthened with externally bonded CFRP plates, happened to collapse before reaching the expected design failure load. Therefore, it is necessary to develop the new strengthening method to overcome the problems of previous bonded strengthening method. This problems can be solved by prestressing the CFRP plate before bonding to the concrete. In this study, a total of 21 specimens of 3.3 m length were tested by the four point bending method after strengthening them with externally bonded CFRP plates. The CFRP plates were bonded without prestress and with various prestress levels ranging from 0.4% to 0.8% of CFRP plate strain. All specimen with end anchorage failed by a plate fracture regardless of the prestress levels while the specimen without end anchorage failed by the separation of the plate from the beam due to premature debonding. The cracking loads was proportionally related to the prestress levels, but the maximum loads of specimens strengthened with prestressed CFRP plates were insignificantly affected by the prestress levels.

Evaluation on Behavioral Characteristics of PSC Integral Abutment Bridge (PSC 일체식 교대 교량의 거동특성 평가)

  • Ahn, Jin-Hee;Yoon, Ji-Hyun;Kim, Sang-Hyo;Kim, Jun-Hwan
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.4A
    • /
    • pp.361-373
    • /
    • 2010
  • Bridges constructed without any expansion joint or bridge bearing are called integral abutment bridges. They integrate the substructure and the superstructure. Possible deformation of the superstructure, due to changes in temperature for example, is prevented by the bending of the piles placed at the lower part of the abutment. This study examines the behavior of integral abutment bridges through soil-pile interaction modeling method and proposes an appropriate modeling method. Also, it assesses the behavior characteristics of the superstructure and piles of integral abutment bridges through parametric study. Soil condition around the pile, abutment height, and pile length were selected as parameters to be analyzed. Structural analysis was conducted while considering the interactions of soil-pile and temperature change-earth pressure on the abutment. Comparative behavior analysis through soil-pile interaction modeling showed that elastic soil spring method is more appropriate in evaluating the behavior of integral abutment bridges. The parametric study showed the tendency that as the soil stiffness around the pile increases, the moment imposed on the superstructure increases, and the displacement of the piles decreases. In addition, it was observed that as the bridge height increases, the earth pressure on the abutment increases and that in turn affects the behavior of the superstructure and piles. Also, as the length of the pile increased, the integral bridge showed more flexible behavior.

Experimental Study to Evaluate the Durability of 100 MPa Class Ultra-high Strength Centrifugal Molding Concrete (100MPa급 초고강도 원심성형 콘크리트의 내구성 평가를 위한 실험연구)

  • Jeong-Hoi Kim;Sung-Jin Kim;Doo-Sung Lee
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.28 no.1
    • /
    • pp.12-23
    • /
    • 2024
  • In this study, a structural concrete square beam was developed using the centrifugal molding technique. In order to secure the bending stiffness of the cross section, the hollow rate of the cross section was set to 10% or less. Instead of using the current poor mixture of concrete and a concrete mixing ratio with a high slump (150-200) and a design strength of 100 MPa or more was developed and applied. In order to investigate the durability of centrifugally formed PSC square beams to be used as the superstructure of the avalanch tunnel or ramen bridge, the durability performance of ultra-high-strength centrifugally formed concrete with a compressive strength of 100 MPa was evaluated in terms of deterioration and chemical resistance properties.Concrete durability tests, including chloride penetration resistance, accelerated carbonation, sulfate erosion resistance, freeze-thaw resistance, and scaling resistance, were performed on centrifugally formed square beam test specimens produced in 2022 and 2023. Considering the information verified in this study, the durability of centrifugally molded concrete, which has increased watertightness in the later manufacturing stage, was found to be superior to that of general concrete.

Structural Behavior Evaluation of NRC Beam-Column Connections (NRC 보-기둥 접합부의 구조적 거동 평가)

  • Jeon, Ji-Hwan;Lee, Sang-Yun;Kim, Seung-Hun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.1
    • /
    • pp.73-80
    • /
    • 2022
  • In this study, details of NRC beam-column connections were developed in which beam and columns pre-assembled in factories using steel angles were bolted on site. The developed joint details are NRC-J type and NRC-JD type. NRC-J type is a method of tensile joining with TS bolts to the side and lower surfaces of the side plate of the NRC column and the end plate of the NRC beam. NRC-JD type has a rigid joint with high-strength bolts between the NRC beam and the side of the NRC column for shear, and with lap splices of reinforcing bar penetrating the joint and the beam main reinforcement for bending. For the seismic performance evaluation of the joint, three specimens were tested: an NRC-J specimen and NRC-JD specimen with NRC beam-column joint details, and an RC-J specimen with RC beam-column joint detail. As a result of the repeated lateral load test, the final failure mode of all specimens was the bending fracture of the beam at the beam-column interface. Compared to the RC-J specimen, the maximum strength of the specimen by the positive force was 10.1% and 29.6% higher in the NRC-J specimen and the NRC-JD specimen, respectively. Both NRC joint details were evaluated to secure ductility of 0.03 rad or more, the minimum total inter-story displacement angle required for the composite intermediate moment frame according to the KDS standard (KDS 41 31 00). At the slope by relative storey displacemet of 5.7%, the NRC-J specimen and the NRC-JD specimen had about 34.8% and 61.1% greater cumulative energy dissipation capacity than the RC specimen. The experimental strength of the NRC beam-column connection was evaluated to be 30% to 53% greater than the theoretical strength according to the KDS standard formula, and the standard formula evaluated the joint performance as a safety side.

A comparative study of electroplating and electroless plating for diameter increase of orthodontic wire (교정용 선재의 직경 증가를 위한 전기도금법과 무전해도금법의 비교연구)

  • Kim, Jae-Nam;Cho, Jin-Hyoung;Sung, Young-Eun;Lee, Ki-Heon;Hwang, Hyeon-Shik
    • The korean journal of orthodontics
    • /
    • v.36 no.2 s.115
    • /
    • pp.145-152
    • /
    • 2006
  • The purpose of this study was to evaluate electroless plating as a method of increasing the diameter of an orthodontic wire in comparison with eletroplating. After pretreatment plating of the 0.016 inch stainless steel orthodontic wire, electroless plating was performed at $90^{\circ}C$ until the diameter of the wire was increased to 0.018 inch. During the process of electroless plating, the diameter of the wire was measured every 5 minutes to examine the increasing ratio of the wire's diameter per time unit. And to examine the uniformity, the diameter at 3 points on the electroless-plated orthodontic wire was measured. An X-ray diffraction test for analyzing the nature of the plated metal and a 3-point bending test for analyzing the physical property were performed. The electroless-plated wire group showed a increased tendency for stiffness, yield strength, and ultimate strength than the electroplated wire group. And there was a statistically significant difference between the two groups for stiffness and ultimate strength. In the electroless-plated wire group, the increasing ratio of the diameter was $0.00461{\pm}0.00003mm/5min$ (0.00092 mm/min). In the electroplated wire group, it was $0.00821{\pm}0.00015mm/min$. The results of the uniformity test showed a tendency for uniformity in both the plating methods. The results of this study suggest that electroless plating of the wire is closer to the ready-made wire than electroplating wire in terms of the physical property. However, the length of plating time needs further consideration for the clinical application of electroless plating.

The Study of Effects of Musculoskeletal Risk Factors on Farmer's Syndrome (근골격계 위험요인이 농부증에 미치는 영향)

  • Park, Jae-Beom;Lee, Kyung-Jong;Lee, Se-Wi;Kim, Jong-Goo;Chung, Ho-Keun
    • Journal of agricultural medicine and community health
    • /
    • v.25 no.1
    • /
    • pp.11-21
    • /
    • 2000
  • This study was conducted to reveal the effects of musculoskeletal risk factor on farmer's syndrome. We sampled 97 farmers aged above 30 in 3 villages of Kyunggi-do. Self-administered questionnaire for general characteristics, farmer's syndrome, musculoskeletal risk factor, blood pressure, and laboratory tests were conducted. According to the score of musculoskeletal risk factor, we divide the subjects high risk group and low risk group. The most common musculoskeletal risk factor is repetitiveness, bending of waist and rapid movement in order. The prevalence of farmer's syndrome of all subjects is 28.9%. In female the prevalence of farmer's syndrome(45.2%) is higher than in male(16.4%) significantly. High musculoskeletal risk group had higher score of farmer's syndrome(5.9) than low musculoskeletal risk group(4.4). The most common symptom is lumbago(76.3%), the second was numb limb and shoulder stiffness(54.6%, 54.6%). The prevalence of numb limb and shoulder stiffness higher in high musculoskeletal risk group than low musculoskeletal risk group, but that of lumbago did not show significant differences. In linear regression, score of farmer's syndrome was related to musculoskeletal risk factor as well as gender. Blood pressure and laboratory test did not show significant differences between two groups. These results suggest that musculoskeletal risk factor would influence farmer's syndrome. Further ergonomic evaluation and intervention of farmer's works and musculoskeletal diseases are needed.

  • PDF

Modern Paper Quality Control

  • Olavi Komppa
    • Proceedings of the Korea Technical Association of the Pulp and Paper Industry Conference
    • /
    • 2000.06a
    • /
    • pp.16-23
    • /
    • 2000
  • The increasing functional needs of top-quality printing papers and packaging paperboards, and especially the rapid developments in electronic printing processes and various computer printers during past few years, set new targets and requirements for modern paper quality. Most of these paper grades of today have relatively high filler content, are moderately or heavily calendered , and have many coating layers for the best appearance and performance. In practice, this means that many of the traditional quality assurance methods, mostly designed to measure papers made of pure. native pulp only, can not reliably (or at all) be used to analyze or rank the quality of modern papers. Hence, introduction of new measurement techniques is necessary to assure and further develop the paper quality today and in the future. Paper formation , i.e. small scale (millimeter scale) variation of basis weight, is the most important quality parameter of paper-making due to its influence on practically all the other quality properties of paper. The ideal paper would be completely uniform so that the basis weight of each small point (area) measured would be the same. In practice, of course, this is not possible because there always exists relatively large local variations in paper. However, these small scale basis weight variations are the major reason for many other quality problems, including calender blacking uneven coating result, uneven printing result, etc. The traditionally used visual inspection or optical measurement of the paper does not give us a reliable understanding of the material variations in the paper because in modern paper making process the optical behavior of paper is strongly affected by using e.g. fillers, dye or coating colors. Futhermore, the opacity (optical density) of the paper is changed at different process stages like wet pressing and calendering. The greatest advantage of using beta transmission method to measure paper formation is that it can be very reliably calibrated to measure true basis weight variation of all kinds of paper and board, independently on sample basis weight or paper grade. This gives us the possibility to measure, compare and judge papers made of different raw materials, different color, or even to measure heavily calendered, coated or printed papers. Scientific research of paper physics has shown that the orientation of the top layer (paper surface) fibers of the sheet paly the key role in paper curling and cockling , causing the typical practical problems (paper jam) with modern fax and copy machines, electronic printing , etc. On the other hand, the fiber orientation at the surface and middle layer of the sheet controls the bending stiffness of paperboard . Therefore, a reliable measurement of paper surface fiber orientation gives us a magnificent tool to investigate and predict paper curling and coclking tendency, and provides the necessary information to finetune, the manufacturing process for optimum quality. many papers, especially heavily calendered and coated grades, do resist liquid and gas penetration very much, bing beyond the measurement range of the traditional instruments or resulting invonveniently long measuring time per sample . The increased surface hardness and use of filler minerals and mechanical pulp make a reliable, nonleaking sample contact to the measurement head a challenge of its own. Paper surface coating causes, as expected, a layer which has completely different permeability characteristics compared to the other layer of the sheet. The latest developments in sensor technologies have made it possible to reliably measure gas flow in well controlled conditions, allowing us to investigate the gas penetration of open structures, such as cigarette paper, tissue or sack paper, and in the low permeability range analyze even fully greaseproof papers, silicon papers, heavily coated papers and boards or even detect defects in barrier coatings ! Even nitrogen or helium may be used as the gas, giving us completely new possibilities to rank the products or to find correlation to critical process or converting parameters. All the modern paper machines include many on-line measuring instruments which are used to give the necessary information for automatic process control systems. hence, the reliability of this information obtained from different sensors is vital for good optimizing and process stability. If any of these on-line sensors do not operate perfectly ass planned (having even small measurement error or malfunction ), the process control will set the machine to operate away from the optimum , resulting loss of profit or eventual problems in quality or runnability. To assure optimum operation of the paper machines, a novel quality assurance policy for the on-line measurements has been developed, including control procedures utilizing traceable, accredited standards for the best reliability and performance.