• Title/Summary/Keyword: Bell Mode

Search Result 38, Processing Time 0.022 seconds

Beat Maps of King Song-Dok Bell (성덕대왕신종의 맥놀이 지도)

  • Kim, Seock-Hyun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11b
    • /
    • pp.498-504
    • /
    • 2002
  • Vibration beat phenomenon is theoretically investigated on a slightly asymmetric cylindrical shell, which is a simplified model of Korean bell. Mode pairs of the slightly asymmetric shell are obtained by receptance analysis and impulse response of the shell is derived using modal expansion and Laplace transform. Based on the impulse response model, beat mapping method is proposed to explain the reason that the beat of a bell vibration shows periodic distribution on the circumference. Beat characteristics of King Song-Dok Bell are explained in detail using the beat map and the measured modal data.

  • PDF

An Equivalent Bell and Beat Period Control in the Sacred Bell of the Great King Seongdeok (성덕대왕신종의 등가 종과 맥놀이 주기 조절)

  • Lee, Joong-hyeok;Kim, Seock-hyun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2013.04a
    • /
    • pp.472-475
    • /
    • 2013
  • This study proposes an equivalent bell model for the Sacred Bell of the Great King Seongdeok An equivalent bell model bas the modal property of the real bell and it consists of an axi-symmetric bell body and a point mass, The bell model is constructed by the finite element analysis based upon the theory of a revolutionary shell. Using the equivalent bell model. the beat period can be controlled by decreasing the thickness of local area. This study aims at showing a beat period control method for a large bell having the similar size to the Sacred Bell of the Great King Seongdeok.

  • PDF

Beat Map Drawing Method of Bell Type Structures and Beat Maps of the King Seong-deok Divine Bell (종형 구조물의 맥놀이 지도 작성법과 성덕대왕신종의 맥놀이 지도)

  • 김석현
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.13 no.8
    • /
    • pp.626-636
    • /
    • 2003
  • The beat distribution property of the King Seong-deok Divine Bell is investigated by experiment and analysis. The beat map method is proposed to explain the beat distribution property on the circumference of the bell. For the analytical investigation, an analytical model of the vibration beat is derived on a slightly asymmetric shell of revolution by using the modal expansion method. In the analytical method, the beat map can be drawn only if the modal parameters of the bell are obtained. The analytical beat model is applied to draw the beat map of the King Seong-deok Divine Bell. The validity of the analytical method is verified by comparing the analytical beat maps with the experimental results. This paper proposes a visualization method of the beat and theoretically identifies the reason why the clear and unclear beats repeat periodically along the circumference of the bell and how the striking position influences the beat distribution property.

Beat tuning of Silla Great Bell (신라대종의 맥놀이 조절)

  • Kim, Seockhyun;Lee, Joong Hyeok
    • The Journal of the Acoustical Society of Korea
    • /
    • v.36 no.3
    • /
    • pp.194-201
    • /
    • 2017
  • Silla Great Bell was made to reproduce King Seongdeok Divine Bell and it was restored to have the same structure and patterns. The most difficult problem was to reproduce the magnificent striking sound and dynamic hum tone with strong beat like in King Seongdeok Divine Bell. Especially, beating sound is attributed to the uncontrollable asymmetry occurring in the casting process, so it can not be predicted or controlled before casting. In this study, we introduce the method and process to make Silla Great Bell have a strong beat with a proper period. Position conditions of mode pairs and striking point for a strong beat were identified. Bell thickness was locally decreased to make proper period of beat. The process was performed according to the simulation result of an equivalent bell model. As a result, the original weak and long beat was made to a strong beat with a proper period.

Vibration Characteristics of High Speed Rotary Bell Cup (고속 회전 벨 컵의 진동 특성)

  • Sohn, Jung Woo;Park, Ji Hoon;Choi, Seung-Bok
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.25 no.11
    • /
    • pp.771-778
    • /
    • 2015
  • In this work, vibration characteristics of high speed rotary bell cup for paint atomizer are numerically investigated. New type of bell cup model is proposed and additional corresponding models with design parameter variations for length and diameter are constructed. Dynamic characteristics, such as natural frequencies and corresponding mode shapes, are studied for each model as a first step. To investigate operation stability, critical speed of rotary bell cup is numerically analyzed based on Campbell diagram and separation margin between operating speed and critical speed is identified. Unbalance vibration responses are also investigated with respect to design parameter variation, operating speed and balancing quality grade of G. Then the proper design guideline for stable operation of high speed rotary bell cup for paint atomizer is suggested.

The Sound Field Reconstruction of a Korean Bell Using an Error Minimization Scheme in the BEM-Based Acoustical Holography (경계요소법에 기초한 음향 홀로그래피에서 오차 최소화 과정에 의한 한국 종의 음장 재구성)

  • 김철희;이장무;강연준
    • Journal of KSNVE
    • /
    • v.9 no.1
    • /
    • pp.131-140
    • /
    • 1999
  • A method to reconstruct the sound field around a Korean bell is developed. The sound radiation problem is formulated based on the boundary element method by using the algorithm of the acoustical holography. Sound pressures at the hologram surface are measured and used as input data for the analysis program that was developed in this study. An error minimization scheme is presented to overcome difficulties that arise in the backward reconstruction of the BEM-based acoustical holography In the model fictitious source surfaces were also introduced to reduce the complexity stemmed from the source shape. The sound field associated with the (4.0) vibrational mode of the Korean bell was visualized and verified experimentally.

  • PDF

Spray Characteristics on the Electrostatic Rotating Bell Applicator

  • Im, Kyoung-Su;Lai, Ming-Chia;Yoon, Suck-Ju
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.12
    • /
    • pp.2053-2065
    • /
    • 2003
  • The current trend in automotive finishing industry is to use more electrostatic rotating bell (ESRB) need space to their higher transfer efficiency. The flow physics related with the transfer efficiency is strongly influenced by operating parameters. In order to improve their high transfer efficiency without compromising the coating quality, a better understanding is necessary to the ESRB application of metallic basecoat painting for the automobile exterior. This paper presents the results from experimental investigation of the ESRB spray to apply water-borne painting. The visualization, the droplet size, and velocity measurements of the spray flow were conducted under the operating conditions such as liquid flow rate, shaping airflow rate, bell rotational speed, and electrostatic voltage setting. The optical techniques used in here were a microscopic and light sheet visualization by a copper vapor laser, and a phase Doppler particle analyzer (PDPA) system. Water was used as paint surrogate for simplicity. The results show that the bell rotating speed is the most important influencing parameter for atomization processes. Liquid flow rate and shaping airflow rate significantly influence the spray structure. Based on the microscopic visualization, the atomization process occurs in ligament breakup mode, which is one of three atomization modes in rotating atomizer. In the spray transport zone, droplets tend to distribute according to size with the larger drops on the outer periphery of spray. In addition, the results of present study provide detailed information on the paint spray structure and transfer processes.

An analysis of the Sound Radiation Characteristics of the King Song-Dok Bell Using Cylindrical Acoustic Holography (원통형 음향 홀로그라피를 이용한 성덕대왕 신종의 방사음장 특성 분석)

  • Kim, Yang-Hann;Kim, Sea-Moon
    • The Journal of the Acoustical Society of Korea
    • /
    • v.16 no.4
    • /
    • pp.94-100
    • /
    • 1997
  • In order to investigate the radiation of sound from the King Song-Duk bell, we measured the sound pressure around the bell at every 30$^{\circ}$ using a microphone line array which was composed of 30 microphones separated by 15cm;total number of measurement point was 360. The sound field was estimated by using cylindrical acoustic holography. The spectrum of measured sound pressure demonstrates that it is almost like white noise in the very beginning, but in 10 seconds two close frequency components(64.06Hz, 64.38Hz) remain and make a famous beating. This beating sound is often believed to make unique sound of the King Song-Duk bell. The mode shapes of that frequency components are the same except that one is rotated by 45$^{\circ}$ from the other. This phenomenon occurs at the other pairs of components are the same except ones in very high frequency range where the mode shapes are rather complex.

  • PDF

Beat Maps of a Slightly Asymmetric Ring (미소 비대칭 링의 맥놀이 지도)

  • 박석균;박기영;서백수;김석현
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.1169-1176
    • /
    • 2002
  • Analytical model of beat response is derived on a slightly asymmetric ring and is veryfied by experiment. The asymmetric ring is a simplified model used to explain the beat property of a Korean bell. The asymmetric ring has mode pair having slight frequency difference in each radial mode. Each mode pair produces beat phenomenon by the interaction of the two close frequency components. Based on the analytical model, beat maps are first proposed and characteristics of beat on the circumference are detaily explained.

  • PDF

Computational Modal Analyses for the Propellant Tank and Small-Scaled First-Stage Models of Liquid-Propulsion Launch Vehicles (우주 발사체 추진제 탱크 및 축소 1단 모델의 전산 모드 해석 연구)

  • Sim, Chang-Hoon;Kim, Geun-Sang;Kim, Dong-Goen;Kim, In-Gul;Park, Soon-Hong;Park, Jae-Sang
    • Journal of Aerospace System Engineering
    • /
    • v.12 no.3
    • /
    • pp.18-25
    • /
    • 2018
  • This research aims to establish the finite-element modeling techniques for computational modal analyses of liquid propellants and flange joints of launch-vehicle structures. MSC.NASTRAN is used for the present computational modal analyses of the liquid-propellant tank and the small-scaled first-stage model. By means of the correlation between the measured and computed natural frequencies, the finite modeling techniques for liquid propellants and flange joints of launch-vehicle structures are established appropriately. This modal analysis using the virtual-mass method predicts well the bell mode of the liquid-propellant tank containing liquid. In addition, the present computation using RBE2 elements for modeling of flange joints predicts the first and second bending-mode frequencies within a relative error of 10%, which is better than the measured frequencies obtained from the modal test, for the small-scaled first-stage model containing liquid.