우주 발사체 추진제 탱크 및 축소 1단 모델의 전산 모드 해석 연구

심창훈¹ · 김근상¹ · 김동건¹ · 김인걸¹ · 박순홍² · 박재상^{1†}

¹충남대학교 항공우주공학과 ²한국항공우주연구원 발사체 구조팀

Computational Modal Analyses for the Propellant Tank and Small-Scaled First-Stage Models of Liquid-Propulsion Launch Vehicles

Chang-Hoon Sim¹, Geun-Sang Kim¹, Dong-Goen Kim¹, In-Gul Kim¹, Soon-Hong Park² and

Jae-Sang Park1*

¹Department of Aerospace Engineering, Chungnam National University

²Launcher Structures and Materials Team, Korea Aerospace Research Institute

Abstract

This research aims to establish the finite-element modeling techniques for computational modal analyses of liquid propellants and flange joints of launch-vehicle structures. MSC.NASTRAN is used for the present computational modal analyses of the liquid-propellant tank and the small-scaled first-stage model. By means of the correlation between the measured and computed natural frequencies, the finite modeling techniques for liquid propellants and flange joints of launch-vehicle structures are established appropriately. This modal analysis using the virtual-mass method predicts well the bell mode of the liquid-propellant tank containing liquid. In addition, the present computation using RBE2 elements for modeling of flange joints predicts the first and second bending-mode frequencies within a relative error of 10%, which is better than the measured frequencies obtained from the modal test, for the small-scaled first-stage model containing liquid.

초 록

액체 추진 우주 발사체의 모드 시험을 대체 혹은 보완할 수 있는 신뢰성 있는 전산 모드 해석 기법 의 정립을 위하여 액체 추진제 및 플렌지 조인트의 유한요소 모델링 기법을 정립하였다. 본 연구에서는 추진제 탱크 모델과 발사체 1단 축소 모델에 대하여 MSC.NASTRAN을 이용하여 전산 모드 해석을 수 행 후, 모드 시험의 고유 진동수를 비교하여 모델링 및 해석 기법을 검증하였다. 추진제 탱크의 경우 가상질량 기법을 이용하여 액체 추진제를 모델링하였으며, 추진제 탱크의 종 모드 (bell mode)를 잘 예 측하였다. 액체 추진제를 포함한 발사체 1단 축소 모델에 대하여, 보정된 재료 물성치와 RBE2 요소를 사용한 플렌지 조인트의 모델링 기법은 각각의 플렌지에서 24개의 볼트 조인트를 사용한 모델에 대하 여 10% 이내의 오차의 1차 및 2차 굽힘 모드의 고유 진동수를 적절하게 계산하였다.

Key Words : Launch Vehicle(우주 발사체), Liquid Propellent(액체 추진제), Flange Joint(플렌지 조인트), Virtual-Mass Method(가상질량 기법), Bell Mode(종 모드), Bending mode(굽힘 모드)

1. 서 론

대형 우주 발사체로써 주로 사용되는 액체 추진 발 사체는 비행 중 추진제의 빠른 소모로 인하여 동적,

Received: Feb. 02, 2018 Revised: Apr. 24, 2018 Accepted: June. 09, 2018 † Corresponding Author Tel: +82-42-821-6682, E-mail: aerotor@cnu.ac.kr © The Society for Aerospace System Engineering 하중, 및 진동 특성이 급격하게 변한다. 이러한 변화를 예측하기 위한 전기체 발사체에 대한 모드 시험은 많 은 비용과 시간을 필요로 한다. 따라서 발사체의 모드 시험을 대체 혹은 보완할 수 있는 신뢰성 있는 전산 모드 해석 기법이 필요하지만, 최근까지 액체 추진제 와 발사체의 단과 단 (stage) 혹은 섹션과 섹션을 연 결하는 플렌지 조인트의 유한요소 모델링 기법의 정립 연구는 수행되지 않고 있다. Atlas-Centaur-Surveyor 발사체의 모드 시험 연구 [1]에서는 비행 중 소모되는 추진제를 고려하면서 고 유 진동수 및 모드 형상의 변화를 측정하였다. 하지만 발사체의 전산 모드 해석 연구는 수행되지 않았다. ARES I-X 발사체의 모드 시험 및 해석 연구의 경우, 발사체 모델을 여러 개의 부분으로 나누어 각 부분에 대하여 모드 시험과 해석을 수행하였지만 발사체 2단 의 액체 추진제는 고려되지 않았다[2].

지금까지 액체로 채워진 단순 원통 구조에 대한 모 드 시험과 해석이 다수 수행되었지만, 대부분의 연구 [3-6]에서 액체가 채워진 원통 구조의 독특한 모드 형상인 종 모드 (bell mode)에 대한 조사는 이루어지 지 않았다. 또한 연료 탱크, 연결 동체, 및 산화제 탱 크로 구성되는 액체 추진 발사체의 구조적 형태를 적 절히 구현하지 않은 단일 원통 구조에 대하여서만 연 구가 수행되었고, 여러 개의 섹션이 결합된 원통 구조 에 대한 모드 시험 및 해석은 거의 수행되지 않았다.

단과 단 혹은 섹션과 섹션을 연결하는 플렌지 조인 트는, 발사체의 구조 강성 (stiffness)에 영향을 미쳐, 발사체의 고유 진동수 및 모드 형상 등의 모드 특성에 중요한 역할을 한다. 발사체의 플렌지 조인트에 대한 선행 연구로, 한국형 발사체 (KSLV-II)의 구조 설계를 위하여 플렌지 조인트의 강도 (strength)를 계산하는 구조 해석 연구가 수행되었으며[7], 진동 및 열 하중 등의 다양한 외력으로 인한 플렌지 조인트의 연화 (softening) 현상에 대한 전산 구조 해석이 수행되었다 [8]. 하지만 발사체의 모드 특성에 대한 플렌지 조인 트의 영향을 고려한 모드 해석 연구는 활발히 수행되 지 않고 있다.

따라서, 본 연구에서는 액체 추진제 탱크 및 발사체 1단 축소 모델에 대하여 액체 추진제와 플렌지 조인트 를 고려한 전산 모드 해석을 MSC.NASTRAN을 이용 하여 수행하고 얻어진 결과를 모드 시험 결과와 비교 하여 모델링 및 해석 기법에 대한 검증 연구를 수행하 였다. 첫째, 액체 추진제의 모델링 기법을 정립하기 위 하여서 아크릴로 제작된 추진제 탱크에 대한 모드 해 석을 수행한 후, 선행 연구[9]의 모드 시험 결과와 비 교하였다. 이때 추진제 탱크 내부의 액체 추진제는 MSC.NASTRAN의 가상질량 기법 (virtual mass method, [10])을 이용하여 모델링하였다. 둘째, 플렌지 조인트의 모델링 기법을 정립하기 위 하여 아크릴로 제작된 발사체 1단 축소 모델의 굽힘 모드 (bending mode)에 대하여 모드 해석과 모드 시 험을 병행하여 수행하였다. 발사체 1단 축소 모델은 산화제 탱크, 연결 동체, 및 연료 탱크의 3개의 원통 구조로 구성되며, 실제 발사체와 동일하게 플렌지 조 인트를 이용하여 결합된다. 전산 모드 해석 시, 플렌지 조인트는 MSC.NASTRAN의 RBE2 요소를 사용하여 모델링되며 플렌지 조인트의 강성을 보정된 재료 물성 치를 이용하여 고려하였다.

이와 같은 전산 모드 해석 및 검증 연구를 통하여 추진제 탱크 모델에 대하여서는 종 모드 (bell mode) 를 관찰하며, 발사체 1단 축소 모델에 대하여서는 플 렌지 조인트의 개수 및 추진제의 채움비 (filling ratio) 에 따른 굽힘 모드의 변화를 조사하였다.

2. 전산 모드 해석을 위한 유한요소 모델링

2.1 액체 추진제 탱크의 유한요소 모델링

액체 추진제를 포함한 추진제 탱크의 유한요소 모델 링을 검증하기 위하여 선행 연구[9]의 추진제 탱크 모 델 (Table 1과 Table 2 및 Fig. 1) 및 모드 시험 결 과를 이용하였다. 선행 연구[9]에서 추진제 탱크는 모 드 시험의 용이성을 위하여 아크릴로 제작되었으며, 양단 자유 조건에서의 액체를 채우지 않은 조건 (채움 비 ()%)에서 모드 시험 및 해석 연구 결과의 상호 비 교를 통하여 아크릴의 재료 물성치 중 탄성 계수를 적 절히 결정하였다 (Table 2). 이 보정된 아크릴 재료 물성치는 모드 시험의 모델과 모드 해석의 모델의 다 양한 원인으로부터의 차이를 적절하게 보정하여 준다. 본 연구에서는 Table 2의 보정된 재료 물성치를 이용 하여 추진제 탱크의 유한요소 모델링을 수행하였다. 추진제 탱크의 MSC.NASTRAN 모델은 4절점의 쉘 요 소 (QUAD4)로 나타내었으며, 추진제를 표현하는 탱크 내부의 액체 (물)는 가상질량 기법을 이용하여 모델링 하였다. 가상질량 기법은 유체와 접촉되는 구조 표면 에 작용하는 유체의 거통 및 힘을 계산하는 이론으로 써 MSC.NASTRAN에서는, 유체와 접촉하는 구조의 요소에 유체의 질량을 분포시켜 유체의 질량 효과를 모델링하며, 액체의 유한요소 모델링을 위한 추가적인 유한요소의 절점 및 자유도가 필요하지 않다.

Table 1 Geometric parameters of acrylic tank [9]

Diameter, D	600 mm	Length, L	1200 mm	
Thickness				
Skin, t _{side}		5	mm	
Top and Bott	om, t _{cap}	60	mm	

Fig. 1 Schematic diagram of the liquid propellent tank [9]

Table 2 Material properties of acrylic [9]

	Before correction	After correction
Elastic modulus	3.1 GPa	4.8 GPa
Poisson's ratio	0.315	0.315
Density	1189 kg/m ³	1189 kg/m ³

2.2 발사체 1단 축소 모델의 유한요소 모델링

발사체 1단 축소 모델은 Fig. 2와 같이 산화제 탱 크, 연결 동체, 및 연료 탱크의 형식으로 구성되어 있 으며 실제 발사체의 결합 기법과 동일하게 플렌지 조 인트를 이용하여 각각의 섹션들이 결합된다[11]. 본 연구의 목표는 액체 추진제 및 발사체 연결부의 유한 요소 모델링이며, 소규모의 모드 시험의 용이성을 위 하여 실물 크기의 발사체와 동적 상사성 (dynamic similarity)을 갖지 않는 축소 및 간략화 된 발사체 1 단 축소 모델을 이용한다.

발사체 1단 축소 모델의 형상은 Fig. 2와 같으며, 각 섹션들은 동체와 플렌지로 구성된다. 각 섹션들의 기 하학적 형상은 한국형 발사체의 1단 모델을 참고하여 얻었다 (축소 비율 4.59%). 동체는 두께 3 mm 및 지 름 200 mm의 아크릴 파이프를 가공하여 제작하였고, 플렌지는 아크릴 평판을 가공하여 제작하였다. 각 섹 션의 동체와 플랜지 조인트의 대한 정보는 Fig. 3과 Fig. 4 및 Table 3에 상세히 주어져있다. 각각의 플렌 지에는 볼트 체결을 위하여 15° 간격으로 지름 5 mm 의 24개의 볼트 홀을 가공하였다 (Fig. 4).

Fig. 2 Schematic diagram of the smallscaled first-stage model

Fig. 3 Bodies of the small-scaled first-stage model

Fig. 4 Flanges of small-scaled first-stage model

	Upper flange	Lower flange
Fuel tank	10 mm	5 mm
Centerbody	5 mm	5 mm
Oxidizer tank	5 mm	10 mm

Table 3 Geometric parameters of flange (t*)

발사체 1단 축소 모델의 5는 Figure MSC.NASTRAN을 이용한 유한요소 해석 모델이며 자 세한 요소 정보는 Table 4에 주어져있다. 가상질량 기 법을 사용하기 위하여 4절점의 쉘 요소 (QUAD4)를 사용하였고 액체 추진제 (물)는 연료 및 산화제 탱크 에 각각 모델링하였다. 아크릴의 재료 물성치는 플렌 지 조인트의 강성을 고려하기 위하여 Table 2에 주어 진 보정된 아크릴 재료 물성치 중 탄성 계수의 값만 4.6GPa로 수정하여 사용하였다. 연결 동체와 연료 및 산화제 탱크를 결합하는 플렌지 조인트는 MSC.NASTRAN의 강체 요소인 RBE2 요소를 이용하 여 나타냈으며, 연결부 모델링의 용이성을 위하여 플 렌지 간의 간격을 5 mm로 모델링하였다. 플렌지 조인 트를 MSC.NASTRAN의 1차원의 스프링 요소 (BUSH)로 모델링할 수 있으나, 발사체 축 방향으로의 스프링의 진동 모드가 관찰될 수 있으며, 스프링 상수 의 값이 클 경우, 발사체 모델의 굽힘 모드가 관찰되 지 않는 등의 이유로 인하여 본 논문에서는 사용하지 않는다.

Fig. 5 Finite element model for the small-scaled first-stage model

Table 4 Summary of finite element modeling

Number of elements (Total: 25,104)			
1,520			
432			
Element size, mm			
5.0			

연결부 볼트 모델은 플렌지 조인트의 볼트가 결합되 는 위치에 있는 플렌지 모델의 절점들을 절점 대 절점 의 결합 방식을 이용하여 모델링하였다. RBE2 요소는 하나의 독립 절점에 종속되는 절점들의 자유도를 구속 하여, 종속 절점 사이의 상대 운동을 방지할 수 있으 며 최대 6개의 자유도를 구속시킬 수 있으므로 구속 자유도를 적절히 선택하여 전술한 아크릴 재료 물성치 의 보정과 함께 연결부 볼트의 강성을 나타낼 수 있 다. 그러나 발사체 1단 축소 모델은 실제 한국형 발사 체의 1단보다 크기가 매우 작으므로, 연결부 볼트 당, 한 개의 유한요소의 절점만 구속되는 경우, 실제 플렌 지 조인트의 강성을 적절히 구현할 수 없다. 따라서 Fig. 6에 주어져 있듯이, 플렌지 조인트의 볼트 한 개 당 9개의 절점을 결합하여 Fig. 7의 연결부 볼트를 모 델링하였으며 이 때, RBE2 요소의 6개의 자유도는 모 두 구속하였다.

Fig. 6 Locations of node-to-node connection

Fig. 7 Fastened flange joint modeling using RBE2 elements

3. 발사체 1단 축소 모델의 모드 시험

3.1 모드 시험용 발사체 1단 축소 모델

양단 자유 경계 조건을 구현하기 위하여 모드 시험 용 발사체 1단 축소 모델을 Fig. 8과 같이 4개의 탄성 로프를 이용하여 모델의 상단을 시험용 지지대에 거치 하였다 [11]. 단, MSC.NASTRAN을 이용한 유한요소 해석 모델에서는 모드 시험용 축소 모델의 상단에 사 용된 탄성 로프를 고려하지 않은 이상적인 양단 자유 경계 조건을 이용하였다. 연료 및 산화제 탱크의 추진 제는 물로 대신하였으며, 각 섹션들은 SUS 재료의 볼 트 (직경 5 mm), 와셔, 및 너트를 이용하여 결합하였 다. 결합에 사용된 볼트는 토크 렌치를 이용하여, 균일 한 힘으로 체결되도록 하였다. 각각의 플렌지에서 플 렌지 조인트의 개수 (24, 12, 및 6개)에 따른 볼트는 플렌지의 원주 방향으로 등간격으로 배치하였다. 모드 시험에서 발사체 1단 모델의 거동을 측정하기 위한 가 속도계는 모델의 축 방향으로 12개를 부착하였다. 가 속도계의 부착 위치는 Fig. 9의 노란색 원과 같으며 가속도계는 모두 동체에 부착하였다. 이 때, 모드 해석 을 통하여 얻어진 모드 형상의 노드 (node)의 위치를 고려하여 노드에는 가속도계를 부착하지 않도록 유의 하였다. 물을 포함하지 않은 모드 시험용 모델의 총 중량은 5.6kg이며, 모드 시험 시 안전을 위하여 산화 제 및 연료 탱크의 채움비는 25%만 이용하였다.

Fig. 8 Small-scaled first-stage model

Fig. 9 Locations of accelerometers

3.2 모드 시험 기법

액체 추진제의 양과 플렌지 조인트의 개수에 따른 발사체 1단 축소 모델의 모드 특성 변화를 확인하기 위하여 모드 시험을 수행하였다[11]. 수직으로 거치된 발사체 1단 축소 모델 최하단의 플렌지를 충격 망치 (PCB 086C03)를 이용하여 가진한 후, 모델의 표면에 부착된 가속도계 (PCB 352C42)를 이용하여 동적 거 동을 측정하였다. 가속도계를 통하여 측정된 가속도 데이터의 시간 영역에 대한 파형을 FFT (Fast Fourier Transform) 분석을 통해 각 굽힘 모드에 대 한 고유 진동수를 확인하였다. 발사체 1단 모델의 모 드 시험 장치도는 Fig. 10과 같으며 데이터 취득 장치 로는 NI PXI (NI 4472)를 이용하였다.

Fig. 10 Schematic diagram of the modal test

4. 추진제 탱크의 모드 해석 검증

MSC.NASTRAN을 이용한 액체 추진제의 유한요소 모델링 기법을 검증 및 정립하기 위하여서, 추진제 탱 크에 대하여 전산 모드 해석을 수행 후, 선행 연구의 모드 시험 결과[9]와 비교하였다.

Table 5는 채움비 0% (H_{water}= 0 mm)의 조건에서, 선행 연구[9]의 모드 시험 결과와 본 연구의 전산 모 드 해석의 고유 진동수 결과이다. 선행 연구의 모드 시험에서 1차 및 2차 모드는 측정되지 않았으며, 추진 제 탱크 내부에 액체를 포함하고 있지 않으므로 종 모 드 및 굽힘 모드가 선행 연구의 모드 시험[9] 및 본 연구의 모드 해석에서 모두 관찰되지 않았다. Table 5 에서 확인할 수 있듯이, 4차 모드에서 선행 연구와 본 연구의 모드 해석의 고유 진동수 결과가 오차가 다소 있지만 3차 및 5차의 고유 진동수는 잘 일치함을 확인 하였다. Fig. 11은 본 연구의 전산 모드 해석으로 계 산된 모드 형상이다.

Table 5 Modal analysis results: filling ratio= 0%

Mode	3rd	4th	5th
Modal test [9], Hz	134.8	146.5	187.1
NASTRAN, Hz	137.4	138.1	192.9
Error, %	1.9	-5.7	-3.1

Fig. 11 Mode shapes of a liquid propellent tank (filling ratio= 0%)

Table 6은 액체의 채움비가 50% (H_{water}= 600 mm)인 조건에서의 추진제 탱크의 주요 모드에 대한 선행 연구[9]의 모드 시험과 본 연구의 모드 해석 결 과의 비교를 나타내고 있으며, 비교적 잘 일치함을 보 여준다. Table 6의 오차는 아크릴 탱크의 보정된 재료 물성치의 부정확성 및 모드 시험용 탱크와 유한요소 해석 모델 사이의 차이에 기인한다고 판단된다. Fig. 12는 전산 모드 해석에서 계산된 추진제 탱크의 모드 형상 결과이며, 액체가 포함된 원통 구조의 독특한 모 드인 종 모드 및 굽힘 모드를 적절히 나타내고 있다. 본 연구의 MSC.NASTRAN을 이용한 전산 모드 해석 과 선행 연구[9]의 모드 시험의 고유 진동수 결과가 잘 일치함으로 본 연구의 가상질량 기법을 이용한 액 체 추진제 모델링 및 전산 모드 해석 기법이 잘 정립 되었음을 확인할 수 있다.

Table 6 Modal analysis results: filling ratio= 50%

Mode	1st	Bell	Bending
Modal test[9], Hz	33.0	117.2	145.0
NASTRAN, Hz	35.2	121.7	151.2
Error, %	6.7	3.9	4.3

Fig. 12 Mode shapes of a liquid propellent tank (filling ratio= 50%)

액체의 다양한 채움비에 따른 추진제 탱크의 고유 진동수의 변화를 조사하기 위하여, 채움비를 0~95% 로 변화시키면서 전산 모드 해석을 수행하였다. Table 7에 주어져 있듯이, 채움비가 높아질수록 추진제 탱크 의 총 질량이 증가하여 고유 진동수가 감소한다. 그러 나, 채움비가 75% 보다 증가할 경우 고유 진동수의 변화가 매우 작은 것을 확인할 수 있다.

 Table 7 Modal analysis results in terms of filling ratio (units: Hz)

Filling ratio	1st mode	Bell mode	Bending mode
0%	92.2	-	_
25%	63.9	149.4	197.1
50%	35.2	121.7	151.2
75%	26.7	91.3	126.4
95%	26.7	91.2	126.3

5. 발사체 1단 축소 모델의 모드 해석 검증

액체 추진 발사체의 액체 추진제와 플렌지 조인트의 유한요소 모델링 및 전산 모드 해석 기법을 검증하기 위하여, 발사체 1단 축소 모델에 대한 모드 시험 및 전산 모드 해석을 수행 후, 1차 및 2차 굽힘 모드에 대한 고유 진동수 결과를 비교하였다. 추진제 및 플렌 지 조인트에 따른 구조의 모드 특성 변화를 고려하기 위하여 액체의 채움비가 0%의 조건에서, 발사체 1단 축소 모델의 각각의 플렌지 (Fig. 4)의 플렌지 조인트 의 개수를 24, 12, 및 6개로 변경하며 모드 시험 및 해석을 수행하였다. 단, 채움비 25%의 조건에서의 발 사체 1단 축소 모델의 모드 시험과 해석은 플렌지 조 인트의 개수가 24개인 모델에 대하여서만 수행하였다. 이 때, 산화제 및 연료 탱크에 대하여 동일한 채움비 를 사용하였다.

채움비 0%의 발사체 1단 축소 모델의 모드 시험과 전산 모드 해석의 상호 비교 결과를 Table 8에 정리 하였다. 플렌지 조인트의 개수가 각각 24개인 경우, 모드 시험과 해석의 고유 진동수 결과가 잘 일치하지 만 플렌지 조인트의 개수가 적을수록 모드 시험과 해 석의 고유 진동수 결과의 오차가 커지는 것을 확인할 수 있다. 이러한 오차의 특성은 모드 시험용 발사체 1 단 축소 모델의 섹션들의 결합에서 플렌지 조인트에 가하여진 초기하중 (preload), SUS 재료의 볼트의 높 은 강성, 및 상부 및 하부 플렌지의 반력의 영향에 기 인한다고 사료된다. 플렌지 조인트의 개수와 상관없이 모드 시험의 고유 진동수 결과가 전산 모드 해석의 고 유 진동수보다 높게 측정되었다. 이는 탄성 로프를 사 용한 모드 시험이 완벽한 양단 자유 경계 조건을 구현 할 수 없기 때문에 발생하였다고 판단된다. 플렌지 조 인트 개수가 24, 12, 및 6개의 발사체 1단 축소 모델 의 전산 모델 해석의 모드 형상 결과는 Fig. 13에 주 어져있다.

 Table 8 Modal test and analysis results (filling ratio: 0%)

Bending modes	First	Second			
Number of joints: 24					
Modal test, Hz	154.3	424.3			
MSC.NASTRAN, Hz	151.8	414.9			
Error, %	-1.6	-2.2			
Number of joints: 12					
Modal test, Hz	151.4	420.7			
MSC.NASTRAN, Hz	140.0	399.4			
Error, %	-7.5	-5.1			
Number of joints: 6					
Modal test, Hz	140.7	420.0			
MSC.NASTRAN, Hz	117.3	364.2			
Error, %	-16.6	-13.3			

Fig. 13 Predicted bending mode shapes (filling ratio: 0%)

플렌지 조인트가 24개인 모델에 대하여 채움비 25% 의 발사체 1단 축소 모델에 대하여 모드 시험과 해석 의 고유 진동수의 비교를 Table 9에 정리하였으며, 전 산 모드 해석으로 계산된 굽힘 모드의 모드 형상을 Fig. 14에 나타내었다. 전산 모드 해석의 결과와 모드 시험의 결과가 매우 잘 일치하므로, 본 연구의 MSC.NASTRAN을 이용한 발사체의 플렌지 조인트와 추진제의 모델링 및 전산 모드 해석 기법이 비교적 잘 정립되었음을 확인할 수 있다.

Table 9 Modal test and analysis results(filling ratio: 25%)

Bending modes	First	Second
Number	of joints: 24	
Modal test, Hz	123.6	373.6
MSC.NASTRAN, Hz	121.4	396.1
Error, %	-1.8	5.7

Fig. 14 Predicted bending mode shapes (filling ratio: 25% & Num. of joints: 24)

6. 결 론

본 연구에서는 우주 발사체의 액체 추진제와 플렌지 조인트의 유한요소 모델링 및 전산 모드 해석 기법의 정립 연구를 MSC.NASTRAN을 이용하여 수행하였다. 가상질량 기법을 이용한 액체 추진제의 유한요소 모델 링 및 전산 모드 해석은 추진제 탱크에 대하여 기존 연구의 모드 시험의 고유 진동수 결과를 상호 비교하 여 검증 및 정립하였다. 추진제 탱크의 전산 모드 해 석 결과, 액체가 담겨진 원통 구조의 주요 모드인 종 모드와 굽힘 모드의 고유 진동수가 모드 시험의 결과 와 잘 일치하였다. 발사체의 연결부인 플렌지 조인트 의 유한요소 모델링 기법은 발사체 1단 축소 모델의 전산 모드 해석 연구를 통하여 정립하였다. 플렌지 조 인트의 연결부 모델링은 RBE2 강체 요소를 이용하였 고, 연료 및 산화제 탱크의 액체 추진제는 가상질량 기법을 이용하여 모델링하였다. 본 연구의 발사체 1단 축소 모델에 대한 전산 모드 해석의 1차 및 2차 굽힘 모드의 고유 진통수가 모드 시험에서 측정된 고유 진 동수와 비교적 잘 일치하므로, 발사체 구조의 플렌지 조인트 모델링 및 전산 모드 해석 기법이 잘 정립되었 음을 확인하였다.

후 기

본 연구는 미래창조과학부에서 시행한 한국형발사체 개발 사업의 지원을 통해 수행되었음.

References

- R. P. Miller, and T. F. Gerus, "Experimental lateral bending dynamics of the Atlas-Centaur-Surveyor launch vehicle," NASA TM X-1837, 1969.
- [2] R. D. Buherle, J. D. Templeton, M. C. Reaves, L. G. Horta, J. L. Gaspar, P. A. Bartolotta, R. A. Parks, and D. R. Lazor, "ARES I-X launch vehicle modal test overview," IMAC-XXVIII, 2010.
- [3] T. Mazuch, J. Horacek, J. Trnka, and J. Vesely, "Natural modes and frequencies of a thin

clamped-free steel cylindrical storage tank partially filled with water: FEM and measurement," *Journal of Sound and Vibration*, 1995.

- [4] S. Qiu, "Dynamic analysis of composite overwrap pressure vessel," MS thesis, Dept. of Mechanical Engineering, Vanderbilt University, 2004
- [5] F. Sabri, and A. A. Lakis, "Hydroelastic vibration of partially liquid-filled circular cylindrical shells under combined internal pressure and axial compression," *The 50th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference*, 2009.
- [6] H. Jalali, and F. Parvizi, "Experimental and numerical investigation of modal properties for liquid-containing structures," *Journal of Mechanical Science and Technology*, 2012.
- [7] G. S. Kim, Y. S. Jang and Y. M. Lee, "Design and analysis of KSLV-IIsection bolt flange joints," *The Korean Society for Aeronautical & Space Sciences* 2013 spring conference, 2013.
- [8] G. M. Henson, and B. A. Hornish, "An evaluation of common analysis methods for bolted joints in launch vehicles," *The 51st AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference*, 2010.
- [9] J. H. Han, S. H. Seo, H. W. Jang, and S. H. Park, "Modal correlation of tank filled with water," *The Korean Society for Noise and Vibration Engineering spring 2016 conference*, 2016.
- [10] W. Johannes, "The virtual mass method," Virtual Mass Seminar, MSC Corporation, 2002.
- [11] C. H. Sim, G. S. Kim, D. G. Kim, I. G. Kim, S. H. Park, and J. -S. Park, "Experimental and Computational Modal Analyses for Launch Vehicle Models considering Liquid Propellant and Flange Joints," *International Journal of Aerospace Engineering*, Article ID 4865010, 2018.