DOI QR코드

DOI QR Code

우주 발사체 추진제 탱크 및 축소 1단 모델의 전산 모드 해석 연구

Computational Modal Analyses for the Propellant Tank and Small-Scaled First-Stage Models of Liquid-Propulsion Launch Vehicles

  • 심창훈 (충남대학교 항공우주공학과) ;
  • 김근상 (충남대학교 항공우주공학과) ;
  • 김동건 (충남대학교 항공우주공학과) ;
  • 김인걸 (충남대학교 항공우주공학과) ;
  • 박순홍 (한국항공우주연구원 발사체 구조팀) ;
  • 박재상 (충남대학교 항공우주공학과)
  • Sim, Chang-Hoon (Department of Aerospace Engineering, Chungnam National University) ;
  • Kim, Geun-Sang (Department of Aerospace Engineering, Chungnam National University) ;
  • Kim, Dong-Goen (Department of Aerospace Engineering, Chungnam National University) ;
  • Kim, In-Gul (Department of Aerospace Engineering, Chungnam National University) ;
  • Park, Soon-Hong (Launcher Structures and Materials Team, Korea Aerospace Research Institute) ;
  • Park, Jae-Sang (Department of Aerospace Engineering, Chungnam National University)
  • 투고 : 2018.02.02
  • 심사 : 2018.06.09
  • 발행 : 2018.06.30

초록

액체 추진 우주 발사체의 모드 시험을 대체 혹은 보완할 수 있는 신뢰성 있는 전산 모드 해석 기법의 정립을 위하여 액체 추진제 및 플렌지 조인트의 유한요소 모델링 기법을 정립하였다. 본 연구에서는 추진제 탱크 모델과 발사체 1단 축소 모델에 대하여 MSC.NASTRAN을 이용하여 전산 모드 해석을 수행 후, 모드 시험의 고유 진동수를 비교하여 모델링 및 해석 기법을 검증하였다. 추진제 탱크의 경우 가상질량 기법을 이용하여 액체 추진제를 모델링하였으며, 추진제 탱크의 종 모드 (bell mode)를 잘 예측하였다. 액체 추진제를 포함한 발사체 1단 축소 모델에 대하여, 보정된 재료 물성치와 RBE2 요소를 사용한 플렌지 조인트의 모델링 기법은 각각의 플렌지에서 24개의 볼트 조인트를 사용한 모델에 대하여 10% 이내의 오차의 1차 및 2차 굽힘 모드의 고유 진동수를 적절하게 계산하였다.

This research aims to establish the finite-element modeling techniques for computational modal analyses of liquid propellants and flange joints of launch-vehicle structures. MSC.NASTRAN is used for the present computational modal analyses of the liquid-propellant tank and the small-scaled first-stage model. By means of the correlation between the measured and computed natural frequencies, the finite modeling techniques for liquid propellants and flange joints of launch-vehicle structures are established appropriately. This modal analysis using the virtual-mass method predicts well the bell mode of the liquid-propellant tank containing liquid. In addition, the present computation using RBE2 elements for modeling of flange joints predicts the first and second bending-mode frequencies within a relative error of 10%, which is better than the measured frequencies obtained from the modal test, for the small-scaled first-stage model containing liquid.

키워드

참고문헌

  1. R. P. Miller, and T. F. Gerus, "Experimental lateral bending dynamics of the Atlas-Centaur-Surveyor launch vehicle," NASA TM X-1837, 1969.
  2. R. D. Buherle, J. D. Templeton, M. C. Reaves, L. G. Horta, J. L. Gaspar, P. A. Bartolotta, R. A. Parks, and D. R. Lazor, "ARES I-X launch vehicle modal test overview," IMAC-XXVIII, 2010.
  3. T. Mazuch, J. Horacek, J. Trnka, and J. Vesely, "Natural modes and frequencies of a thin clamped-free steel cylindrical storage tank partially filled with water: FEM and measurement," Journal of Sound and Vibration, 1995.
  4. S. Qiu, "Dynamic analysis of composite overwrap pressure vessel," MS thesis, Dept. of Mechanical Engineering, Vanderbilt University, 2004
  5. F. Sabri, and A. A. Lakis, "Hydroelastic vibration of partially liquid-filled circular cylindrical shells under combined internal pressure and axial compression," The 50th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, 2009.
  6. H. Jalali, and F. Parvizi, "Experimental and numerical investigation of modal properties for liquid-containing structures," Journal of Mechanical Science and Technology, 2012.
  7. G. S. Kim, Y. S. Jang and Y. M. Lee, "Design and analysis of KSLV-IIsection bolt flange joints," The Korean Society for Aeronautical & Space Sciences 2013 spring conference, 2013.
  8. G. M. Henson, and B. A. Hornish, "An evaluation of common analysis methods for bolted joints in launch vehicles," The 51st AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, 2010.
  9. J. H. Han, S. H. Seo, H. W. Jang, and S. H. Park, "Modal correlation of tank filled with water," The Korean Society for Noise and Vibration Engineering spring 2016 conference, 2016.
  10. W. Johannes, "The virtual mass method," Virtual Mass Seminar, MSC Corporation, 2002.
  11. C. H. Sim, G. S. Kim, D. G. Kim, I. G. Kim, S. H. Park, and J. -S. Park, "Experimental and Computational Modal Analyses for Launch Vehicle Models considering Liquid Propellant and Flange Joints," International Journal of Aerospace Engineering, Article ID 4865010, 2018.