• Title/Summary/Keyword: Bedrock channel

Search Result 36, Processing Time 0.028 seconds

Erosion processes in bedrock river -A review with special emphasize on numerical modelling- (기반암 하상의 침식과정 -수치 모형을 중심으로 한 고찰-)

  • Kim, Jong-Yeon;Hoey, Trevor;Bishop, Paul;Kim, Ju-Yong
    • The Korean Journal of Quaternary Research
    • /
    • v.20 no.2
    • /
    • pp.11-29
    • /
    • 2006
  • A bedrock river is a channel in which bedrock is exposed along the channel bed or walls for at least approximately half of its length. In some case, a continuous alluvial veneer may be present, but this is completely mobilized during floods. From the point of long term landscape evolution during the Quaternary, the bedrock channel determines local base level and the lowering rate of bedrock channels controls the rate of erosion and transport processes and forms on the adjacent hillslopes. In this review, various erosional processes in bedrock river channels are classified and discussed. Especially, theoretical and numerical models on channel bed abrasion with bed load sediment particles are introduced and discussed.

  • PDF

Influence of Tectonic Uplift on Longitudinal Profiles of Bedrock Rivers: Numerical Simulations (융기가 기반암 하상하천의 종단곡선에 미치는 영향에 대한 연구 -수리 모형을 통한 연구-)

  • Kim Jong Yeon
    • Journal of the Korean Geographical Society
    • /
    • v.39 no.5 s.104
    • /
    • pp.722-734
    • /
    • 2004
  • Longitudinal profiles of bedrock rivers play a fundamental role in landscape history by setting the boundary conditions for landform evolution. Longitudinal profiles are changed with climatic conditions, lithology and tectonic movements. Tectonic movement is an important factor controlling longitudinal profiles, especially in tectonically active area where uplift rates are regarded as a major factor controlling channel gradient. However study on bedrock channel has made little progress, because controls over bedrock river incision are yet to be clarified. Previous numerical simulations have used a simple diffusion model, which links together the overall processes of bedrock channel erosion as in other landform evolution models. In this study, previous bedrock incision models based on physical processes (especially abrasion) are reviewed and new modifications are introduced. Using newly formulated numerical model, the role of spatial pattern and intensity of tectonic uplift on changes in river longitudinal profile was simulated and discussed.

A Study on the Characteristics of River Sediments and the Rebound Strength of Rock and Sediment in Dong River (동강의 하천 퇴적물의 입자 특성 및 암석의 반발 강도 특성에 대한 연구)

  • Shin, Won Jeong;Kim, Jong Yeon
    • Journal of The Geomorphological Association of Korea
    • /
    • v.26 no.1
    • /
    • pp.41-57
    • /
    • 2019
  • The grain size characteristics of river sediments and the characteristics of bedrock were investigated for the 24km section of the Dong River upstream of the Han River. The bedrock of the study area is various limestone belonging to the Paleozoic Choseon limestone group, and Mesozoic sandstone and conglomerate occur in some areas. Most of the river channel is made of limestone, and most of the river bottom is covered with fluvial sediments. More than 70% of these sediments are sandstone and conglomerate, rather than limestone which forms the basis of the valley. Sediment particles seem to have been supplied upstream of the study area rather supplied from the slope near of the channel. It is difficult to find the statistically significant difference in the shape of the sediment particles of limestones and non-limestones. However, limestones has platy forms rather than block forms, it can be assumed that the limestone was supplied from the surrounding valley wall and transported over a short distance. The particle sizes of DG1~DG2(the upstream section) are decreasing in the downstream direction. However, at DG3, which is a tributary, Jijangcheon, confluence particle size increases and at DG4 particle size increases more. In the case of DG4, it may be influenced by the influx of tributaries, but it also can be supposed as the impact of the large flood in 2002. In the downstream parts(DG5~DG7), the particle size decreases exponentially with distance. The rebound strength of stream sediments and bedrock was measured by using Schmidt hammer. Limestone showed lower rebound strength than non-limestone. According to the results of the sediment and bedrock, it can be seen that the sandstone and conglomerate with high rebound values pass through valley with the relatively low strength limestone. The sediments of limestone were decreased in grain size more rapidly than those of limestone sediments.

3 Dimensional Changes of Bedrock Surface with Physical Modelling of Abrasion (마식에 의한 기반암면의 표면 변화에 대한 실험 연구)

  • Kim, Jong-Yeon
    • Journal of the Korean Geographical Society
    • /
    • v.42 no.4
    • /
    • pp.506-525
    • /
    • 2007
  • Incision into bedrock channel is the primary control of landform evolution, but research into bedrock incision process stagnated for long time. Due to the scaling problem of the application of results from flume studies to bedrock channel, there is a strong need to simulate the bedrock incision process with more realistic models. As a part of investigation into controls of bedrock channel incision, three-dimensional changes of rock surface with abrasion was investigated with physical modelling. 18 rock plates were abraded with various sediment particle size and sediment load and abraded surfaces of the plates were scanned with high resolution 3-D scanner. To identify the spatial pattern of erosion of the rock plates, various methods were used. There was no synthetic or holistic method that showed all features of bedrock plate produced by abrasion, so each plate was analyzed using some available methods. Contour maps, shaded relief maps and profiles show that abrasion concentrated on the centre of plate (cross profile) and upstream and downstream edges (longitudinal profile) and eroded area extended inwards. It also found that the cracks and boundaries of forming materials easily eroded than other parts. Changing patterns of surface roughness were investigated with profiles, regression analysis and spectral analysis. Majority of plates showed decrease in small-scale roughness, but it depends on microstructures of the plates rather than general hardness or other factors. SEM inspection results supported this idea.

Certifying the Characteristics of Artificial Explosion Sounds Traveled through Underground Bedrock Medium (지하 암반 매질을 통과한 인공발파음 특성 규명)

  • Yoon, Sang-Hoon;Bae, Myung-Jin
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.10C
    • /
    • pp.844-850
    • /
    • 2008
  • This paper stated the proposed algorithm to certify the characteristics of artificial explosion sounds traveled through underground bedrock medium. Artificial explosion that travel through underground bedrock had an attenuation within high frequency bands in increase of a distance with multiple transmission paths phenomenon and inhomogeneity of geological status. In this paper, explosion experiment was made in underground tunnel to verify efficiency of proposed algorithm. The could certify the characteristics of artificial explosion sounds as extracted and numerically quantified the characterized parameter with collected sound sample that traveled through underground bedrock channel.

A Theoretical Study on the Landscape Development by Different Erosion Resistance Using a 2d Numerical Landscape Evolution Model (침식저항도 차이에 따른 지형발달 및 지형인자에 대한 연구 - 2차원 수치지형발달모형을 이용하여 -)

  • Kim, Dong-Eun
    • Economic and Environmental Geology
    • /
    • v.55 no.5
    • /
    • pp.541-550
    • /
    • 2022
  • A pre-existing landform is created by weathering and erosion along the bedrock fault and the weak zone. A neotectonic landform is formed by neotectonic movements such as earthquakes, volcanoes, and Quaternary faults. It is difficult to clearly distinguish the landform in the actual field because the influence of the tectonic activity in the Korean Peninsula is relatively small, and the magnitude of surface processes (e.g., erosion and weathering) is intense. Thus, to better understand the impact of tectonic activity and distinguish between pre-existing landforms and neotectonic landforms, it is necessary to understand the development process of pre-existing landforms depending on the bedrock characteristics. This study used a two-dimensional numerical landscape evolution model (LEM) to study the spatio-temporal development of landscape according to the different erodibility under the same factors of climate and the uplift rate. We used hill-slope indices (i.e., relief, mean elevation, and slope) and channels (i.e., longitudinal profile, normalized channel steepness index, and stream order) to distinguish the difference according to different bedrocks. As a result of the analysis, the terrain with high erosion potential shows low mean elevation, gentle slope, low stream order, and channel steepness index. However, the value of the landscape with low erosion potential differs from that with high erodibility. In addition, a knickpoint came out at the boundary of the bedrock. When researching the actual topography, the location around the border of difference in bedrock has only been considered a pre-existing factor. This study suggested that differences in bedrock and various topographic indices should be comprehensively considered to classify pre-existing and active tectonic topography.

Conservation Measure of Sajapyeong Alpine Wetland (사자평 고산습지의 보전대책)

  • Son, Myoung-Won
    • Journal of the Korean association of regional geographers
    • /
    • v.17 no.2
    • /
    • pp.141-149
    • /
    • 2011
  • The formation of Sajapyeong Alpine Wetland was influenced by factors of drainage basin and its geology, and fire-shifting cultivation. Sajapycong drainage basin had a narrow outlet, Sijeon-cheon in it flowed relatively slowly. Bedrock in basin was weak to mechanical weathering, many rock detritus were, produced. Deforestation for reclamation using fire accelerated topsoil loss. Thus much sediments was supplied to Sijeon-cheon and deposited in the channel bed, and wetland was formed on channel marginal footslope. In Sajapyeong moor were Gullies formed along road. Because they blocked sediments and throughflow transferring into moor, moor became dry land. In order to prevent this drying, we have, to raise water level of a drain ditch to level of weathered bedrock to transfer throughflow into moor, modify the shape of ditch to be naturally irregular, and construct large boulders step on the Sijeon-cheon bed to prevent from lowering of its bed.

  • PDF

A study on waterfall classification by form and processes (폭포의 지형학적 분류에 관한 연구)

  • PARK, Kyeong;KIM, Ji Young
    • Journal of The Geomorphological Association of Korea
    • /
    • v.21 no.4
    • /
    • pp.85-96
    • /
    • 2014
  • A waterfall is a channel unit with steep bedrock. No strict criteria for height, water volume, gradient to define waterfalls exist in Korea. The goal of our study is to classify waterfalls based on morphological forms which are the outcomes of developmental processes. The genesis of waterfall depends upon erosional properties of waterfall. The height, gradient, bedrock strength and stream power of waterfalls are regarded as the main factors, by which waterfalls can be classified. We find out that the most important factor for the development of waterfalls is joint system. Development of joint system varies depending on bedrocks. Flow directions and erosional types are decided by the density and direction of joint system in the bedrock, which also decide the height and gradient of stream bed. Joint type decides the gradients of the bed, gradient and height of waterfalls, therefore, decides morphological forms.

A Study on the Landforms Near of Mooseom Village, Naeseongcheon (내성천 무섬마을 인근의 하천 지형 특성에 대한 연구)

  • Kim, Jong Yeon;Shin, Won Jeong
    • Journal of The Geomorphological Association of Korea
    • /
    • v.26 no.3
    • /
    • pp.1-17
    • /
    • 2019
  • Naeseongcheon is Korea's representative sand stream, and it is one of the regions where the dynamic changes of various river topography developed in the sand bed can be observed. Most of drainage area near of the river channel are formed with Daebo granite, and the granite weathering zone is developed at the surface of hill. Due to the massive input of sediment flux, braided channel reaches are found some of the area. However, the results of the study shows that the alluvial layer is very thin in some reaches. In addition, bedrock or weathered materials, including the Tors are exposed at the channel beds. On the other hand, during the flood, a considerable amount of sediment was introduced, causing the massive sediment to be close to 1m thick. In addition, despite the short distance, large changes in the particle size and sorting of the sediment were observed. Vegetation, on the other hand, has been shown to have a significant effect on the development of the overall channel bed topography, as reported in previous studies. In small floods or low water levels, vegetation's protection role of the surface is predominates, but in large flood conditions, herbaceous loss at the surface of the point bars, accelerating the erosion of surface.

Analysis on Channel Morphology and Rock Resistance by Difference of Bedrock Types between Upper and Lower Reach (상.하류의 기반암 차이에 따른 하천의 형태와 암석의 저항력 분석)

  • Lee, Gwang-Ryul
    • Journal of the Korean Geographical Society
    • /
    • v.42 no.1 s.118
    • /
    • pp.27-40
    • /
    • 2007
  • The streams evolve to diverse forms influenced by various factors such as rock resistance tectonic process, sediments and discharge. This study focuses on erosion resistance of rocks among these factors. The morphology of plane and longitudinal profile has been analysed in upper and lower reach of 6 streams using GIS; Yeoryong-cheon, Heungjeong-cheon, Duhak-cheon, Daehwa-cheon, Namcheon-cheon, Guryong-cheon, having distinct bedrock types between upper and lower reach. While the basins of granite have gentle slope, low concavity and wide valley area, those of gneiss form steep slope, high concavity and narrow valley area. However, the basins of sedimentary rock make steep slope and high relief in main channel, the other features show some differences in each stream. Among the various morphological features, the indices on slope and concavity of main channel, drainage density, ratio of valley area, average slope and average relief of the basin which have clear differences between rocks in upper and lower reach are calculated to interpret the erosion resistance of rocks in upper and lower reach. As a result, the upper reaches composed of gneiss have the highest erosion resistance, sedimentary rocks in upper and lower reaches show moderate resistance, and granite reaches generally have the lowest resistance except the upper reaches bordered by sedimentary rock.