• Title/Summary/Keyword: Bed slope

Search Result 222, Processing Time 0.026 seconds

A Study of Coarse Bed Materials in Small Streams in Rocky Mountains (로키 산맥 소하천의 조립질 하상 퇴적물에 관한 연구)

  • Kim, Jong-Wook
    • Journal of the Korean Geographical Society
    • /
    • v.33 no.1
    • /
    • pp.1-16
    • /
    • 1998
  • This study surveyed intensively the relationships between grain size of coarse bed materials and some principal factors in channel system, drainage area and channel slope, in Rocky Mountains. The result of this research shows that there are statistically significant relationships between these factors. Generally, the grain size and the channel slope exponentially decreased in the study area with the increase in drainage area. However, there are great differences in grain size and channel slope between upstream and downstream channels. The boundary lines are commonly located at near the mouth of canyon. From these results, it can be concluded that the bed material characteristics and the channel slope are strongly influenced by the geological and geomorphological background of the drainage basin in this study area.

  • PDF

Limit Velocity for Lateral Stable Bed in Natural Curved Channels (자연하천 만곡부의 횡방향 안정하상을 위한 한계속도)

  • Choe, Jong-In
    • Journal of Korea Water Resources Association
    • /
    • v.35 no.2
    • /
    • pp.195-201
    • /
    • 2002
  • In this study, an equation is proposed to estimate the limit velocity for lateral stable bed in a curved channel stream. The stable bed on lateral direction is satisfied when there is no more deformation occurs on the transverse bed slope and non-scouring condition in a bend. A theoretical equation for limit velocity is derived using a transverse bed slope model. So, the limit velocity has its theoretical background in the equilibrium of two forces, lateral shear force at the bed due to longitudinal flow and the corresponding lateral bed shear force. To verify the equation, data from four natural river channels were used. There is good agreement between the calculated values using this equation and the measured values. The corrections in equation was found to be correlated with the averaged particle Froude number.

An Application of Stream Classification Systems in the Nam River, Korea (남강에 대한 하천분류체계의 적용 연구)

  • Kim, Kiheung;Jung, Heareyn
    • Ecology and Resilient Infrastructure
    • /
    • v.2 no.2
    • /
    • pp.118-127
    • /
    • 2015
  • Because streams have a great diversity of morphological features according to their reaches, it is necessary to classify the types of streams in order to assess their characteristics of channel. In addition, a quantitative assessment system for channel characteristics should be reflected in the stream type properties. Therefore, this study compares two stream classification system (Rosgen's and Yamamoto's) to review their applicability on Korean streams, and the two classification systems were applied on the Nam River. In order for the mean bed slope and the longitudinal connectivity of the provincial and national streams to be reflected in the assessment system of channel characteristics, the Yamamoto system is considered highly adaptable in the stream geomorphology side. In addition, it has been found the Rosgen system has a low correlation of bed slope compared to the Yamamoto system in the view of bed materials. On the other hand, the Yamamoto system was found to be capable of reflecting sediment sorting (hydraulic sorting) of the bed slope. According to the results obtained at the Nam River, the Rosgen system could not classify a type of stream by relationship between bed material and bed slope, but the Yamamoto system can verify the correlation of stream type. However, further review is needed with respect to the applicability of natural rivers. Three types of stream that can be applied to the assessment system of channel characteristics were proposed.

Radial Thickness of Ice Jam in Channel Bends

  • Yoon, Sei-eui;Lee, Jong-tae
    • Korean Journal of Hydrosciences
    • /
    • v.1
    • /
    • pp.61-71
    • /
    • 1990
  • The characteristics of radial thickness of ice jam at the center part of channel bends were analyzed briefly in this paper. Jam thickness in channel bends increases both toward the inner bank, and dowmstream. For this study, slope at the jam's underside was assumed to be liner with similarity of radial slope of bed in alluvial bends. Radial slope at the jam's underside in floating ice elements was estimated using the force equilibrium theory in the radial direction. The eqution which can be estimated the radial slope of ice jam was suggested using Falcon and Kennedy's bed layer theory. Experimental data, which were measured at the center part of cross-section in a single 180-degree bend, were compared to the calculated values using the suggested equtions. The result shows that the calcultated values were smaller than the measured ones. Ot is considered that the estimated value of shear stress in the radial direction may be smaller than the actual and two-layer model may be not suibable for alluvial bend flow.

  • PDF

Estimate of Time of Concentration for Stream at Island of Incheon (인천연안 도서지역 소하천의 도달시간 산정(영흥도를 중심으로))

  • Choi, Gye-Woon;Chung, Yeoun-Jung;Han, Man-Shin
    • 한국방재학회:학술대회논문집
    • /
    • 2007.02a
    • /
    • pp.189-194
    • /
    • 2007
  • Kirpich formula was selected as the proper formula for calculating the concentration time at island streams. Kirpich formula can be applied for the expanded range from surface area of $0.453km^2$ and channel bed slope of $3{\sim}5%$ to surface area of $2.0km^2$ and channel bed slope of 1.5%.

  • PDF

A Model Study on the Variation of Apparent Resistivity along with Electric Resistivity Change of Host Rock (모암(母岩)의 전기비저항(電氣比抵抗) 변화(變化)에 따른 외견비저항(外見比抵抗)의 변화양상(變化樣相)에 관(關)한 모형연구(模型硏究))

  • Min, Kyung Duck;Jun, Myoung Soon
    • Economic and Environmental Geology
    • /
    • v.13 no.3
    • /
    • pp.159-166
    • /
    • 1980
  • A model study was conducted for the investigation of apparent resistivity variation along with electric resistivity variation of host rock and dip variation of bed. Experiments were carried out for the cases of horizontal and dipping beds in a water tank by using Wenner and Schlumberger arrays and by changing salinity of water. The ratios of resistivity values of the bed to that of brine were 1 : 10, 1 : 50, 1 : 100 and 1 : 500. Natural coally-shale of $55cm{\times}35cm{\times}3.5cm$ was used as a bed for experimental model, and brine as a host rock. Equi-resistivity curves and characteristic curves were obtained for each case of the experiment. The equi-resistivity curve was drawn both on the cross section parallel to strike of bed and longitudinal section perpendicular to it. The characteristic curve was drawn on the cross section. In the case of dipping bed of different dips, the curves are parallel to the boundary of the bed in the upper part of the bed, and are inclined to the opposite direction with the same angle of the dip of bed in the lower part. We can deduce, from the equi-resistivity curves, the location, shape and dip of the bed. It is shown in the characteristic curves that when the ratio of resistivity value of bed to that of host rock increases, the slope of curves becomes steeper, location of low-resistivity zone lower, and the width of it narrower. The slope of curves also becomes steeper when dip of bed increases. We can deduce, from the characteristic curves, the ratio of resistivity values between adjacent beds. It was found out from the experiments that electric resistivity method could be applicable to prospecting for underground geology with an electric resistivity contrast of 1 : 10. This fact strongly suggests that distinction of coal from coally-shale could be possible in a certain field condition.

  • PDF

Verification on the Design Formulas of Apron Length by Scour Analysis at Weir Downstream (보 하류부 세굴 분석을 통한 물받이공 길이 설계 공식 검토)

  • Ko, Dongwoo;Lee, Changhun;Kang, Joongu
    • Ecology and Resilient Infrastructure
    • /
    • v.7 no.2
    • /
    • pp.83-89
    • /
    • 2020
  • This hydraulic study analyzed the scour effect at fixed downstream weirs based on the changes in the upstream bed slope. The study was performed using six different bed slopes, that is, 0%, 2%, 3%, 4%, 7%, and 10% at 0.117 ㎥/s in all cases. The scour depth, scour length, and scour volume were measured using a broadband laser scanner to quantitatively analyze the scour at the downstream weir. This study also examined the adequacy of the designed apron length by comparatively analyzing the results of the scour experiments and the apron length calculated using conventional design standard formulas. The analysis of the local scour effect at the downstream weir showed that scour length and scour depth increased as the bed slope became steeper. A comparison between the results of the scour experiment and that of the conventional design formulas showed that both formulas of the National Construction Research Institute and the Bligh were distributed within the allowable values when there was no upstream bed slope. However, as the bed slope upstream of the weir gradually increased, the scour lengths of the apron deviated slightly from the values obtained from the conventional design formulas.

Construction and Monitoring of Test bed in Urban Sediment Disaster Prevention Technology (도심지 토사재해 방어기술 테스트베드 구축 및 모니터링 연구)

  • Lee, Jung-min;Kim, Hyo-Jin;Lee, Yoon-Sang;Jin, Kyu-Nam
    • Land and Housing Review
    • /
    • v.8 no.3
    • /
    • pp.161-169
    • /
    • 2017
  • In this study, sediment transfer and precipitation analysis of the test bed watershed was conducted through the model for the application and practical use of the urban sediment disaster prevention technology, and used this as an aid to design to secure reliability. In addition, conducted the test bed monitoring with the defense technology, analyzed the effect, and established the maintenance plan. Analyzed the change of soil deposition volume through arbitrary slope adjustment for the currently installed stormwater conduit of the test bed watershed. As a result, it is important to reduce the total sedimentation amount in the adjustment of the slope of the entire pipeline, but it is important that the sedimentation depth of each sediment does not rise to such a degree as to threaten the performance of the pipeline. Considering these matters, it is necessary to design the pipeline to prevent the clogging of the soil from the viewpoint of the reliability of the entire pipeline. The sediment disaster defense technology test bed is divided into a new city and an old city, and old city test bed is under construction. The result obtained through the monitoring of the test bed in the new city, sediment disasters such as debris can delay the time to reach the downtown area, and it is possible to secure the golden time, such as evacuation and rescue through the warning system. Also, the maintenance of the test bed application was suggested. Continuous and systematic monitoring is required for securing the reliability of element technology and successful commercialization.

Development of Complementary Mild-slope Equation for Stream Function Over Permeable Bed (투수층에 적용 가능한 흐름함수방식의 확장형 완경사방정식의 개발)

  • Kim, Gunwoo
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.22 no.6
    • /
    • pp.758-765
    • /
    • 2016
  • In this study, wave damping due to a permeable bed of finite depth was modelled using a complementary mild-slope equation for stream function. The energy dissipating term in the mild-slope equation was presented in terms of stream function. In order to prevent re-reflection of reflected waves along the outer boundary, a delta-function-shaped source function was derived to generate a wave in a computational domain. Numerical experiments were conducted to measure the reflection coefficient of waves over a planar slope for various incident wave periods. The numerical result of the proposed model was compared with that of an integral equation method, showing good agreement in general. However, the proposed model showed relatively higher transmission rate for the larger permeability and the longer wavelength.

Relationship between Stream Geomophological Factors and the Vegetation Abundance - With a Special Reference to the Han River System - (하천의 지형학적 인자와 식생종수의 관계 -한강수계를 중심으로-)

  • 이광우;김태균;심우경
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.30 no.3
    • /
    • pp.73-85
    • /
    • 2002
  • The purpose of this study was to develop prediction models for plant species abundance by stream restoration. Generally the stream plant is affected by stream gemophology. So in this study, the relationship between the vegetation abundance and stream gemophology was developed by multiple regression analysis. The stream characteristics utilized in this study were longitudinal slope, transectional slope, micro-landforms through the longitudinal direction, riparian width and geometric mean diameter and biggest diameter of bed material, and cumulated coarse and fine sand weight portion. The Pyungchang River with mountainous watershed and the Kyungan stream and the Bokha stream in the agricultural region were selected and vegetation species abundance and stream characteristics were documented from the site at 2~3km intervals from the upper stream to the lower. The Models for predicting the vegetation abundance were developed by multiple regression analysis using SPSS statistics package. The linear relationship between the dependant(species abundance) and independant(stream characteristics) variables was tested by a graphical method. Longitudinal and transectional slope had a nonlinear relationship with species abundance. In the next step, the independance between the independant variables was tested and the correlation between independant and dependant variables was tested by the Pearson bivariate correlation test. The selected independant variables were transectional slope, riparian width, and cumulated fine sand weight portion. From the multiple regression analysis, the $R^2$for the Pyungchang river, Kyungan stream, Bokga stream were 0.651, 0.512 and 0.240 respectively. The natural stream configuration in the Pyungchang river had the best result and the lower $R^2$for Kyunan and Bokha stream were due to human impact which disturbed the natural ecosystem. The lowest $R^2$for the Bokha stream was due to the shifting sandy bed. If the stream bed is fugitive, the prediction model may not be valid. Using the multiple regression models, the vegetation abundance could be predicted with stream characteristics such as, transection slope, riaparian width, cumulated fine sand weigth portion, after stream restoration.