• Title/Summary/Keyword: Bed Shear Stress

Search Result 79, Processing Time 0.018 seconds

Numerical Analysis on the Turbulence Patterns in The Scour Hole at The Downstream of Bed Protection (하상보호공 직하류부 세굴공의 난류양상에 관한 수치해석적 연구)

  • Lee, Jaelyong;Park, Sung Won;Yeom, Seongil;Ahn, Jungkyu
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.5
    • /
    • pp.20-26
    • /
    • 2019
  • Where hydraulic structures are to be installed over the entire width of a river or stream, usually a bed protection structure is to be installed. However, a local scour occurs in which the river bed downstream of the river protection system is eroded due to the influence of the upstream flow characteristics. This local scour is dominant in the flow and turbulence characteristics at the boundary of the flow direction and in the material of the bed materials, and may gradually become dangerous over time. Therefore, in this study, we compared the turbulence patterns in the local scour hole at the downstream of the river bed protection with the results of the analysis of the mobile bed experiment, and compared with the application of OpenFoam, a three dimensional numerical analysis model. The distribution of depth-averaged relative turbulence intensities along the flow direction was analyzed. In addition to this result, the stabilization of scour hole was compared with the bed shear stress and Shields parameter, and the results were compared by changing the initial turbulent flow conditions. From the results, it was confirmed that the maximum depth of generation of the three-stage was dominantly developed by the magnitude of depth-averaged relative turbulence intensity rather than the mean flow velocity. This result also suggests that design, construction or gate control are needed to control the depth-averaged relative turbulence intensities in order to reduce or prevent the local scour faults that may occur in the downstream part of the bed protection.

FINITE ELEMENT MODELING FOR HYDRODYNAMIC AND SEDIMENT TRANSPORT ANALYSIS (II) : SEDIMENT TRANSPORT STUDY

  • Noh, Joon-Woon
    • Water Engineering Research
    • /
    • v.4 no.2
    • /
    • pp.99-109
    • /
    • 2003
  • Since bed elevation changes are mainly dependent on the flow velocity and corresponding shear stress, it is possible to predict bed elevation numerically using velocity components. For the scour analysis due to channel contraction, a bed load transport model is developed and applied to estimate scour depth around coffer dam in the Mississippi River. During Phase I of the Lock & Dam No. 26 replacement project, a coffer dam was constructed to reduce the flow area approximately by 50%. Flow velocity increases due to the flow area reduction yields significant lowering (erosion) of the channel bed elevation. The proposed numerical model solves the sediment continuity equation using the finite element method to evaluate scour process in the vicinity of the coffer dam

  • PDF

An Experimental Study for Estimation of Erosion Rate of Fine Cohesive Sediments (미세-점착성 퇴적물의 침식률 산정을 위한 실험적 연구)

  • Hwang Kyu-Nam;So Sang-Don;Kim Tae-Min
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.17 no.2
    • /
    • pp.119-128
    • /
    • 2005
  • An annular flume has been constructed in order to estimate the erosion rate of fine cohesive sediments. Under an uniform bed condition, some erosion tests for Kaolinite sediments have been conducted to examine the performance of the flume and to check the validity of experimental method and results. In this study, the critical shear stress for erosion and the erosion rate coefficient are estimated and compared with the existing measurements. It is concluded that the performance of the annular flume is good enough to conduct erosion tests and the experimental method and results are valid.

An Experimental Study on Depositional Parameters of Cohesive Sediments in Semi-closed Bay (준 폐만 점착성 퇴적물의 퇴적매개변수 산정에 관한 실험적 연구)

  • Jung, Eui-Taek;Kim, Yong-Muk;Kim, Dong-Ho;Hwang, Kyu-Nam
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.24 no.3
    • /
    • pp.159-165
    • /
    • 2012
  • In this study, a series of deposition tests have been performed using an annular flume and depositional parameters of natural cohesive sediments have been estimated domestically for the first time. The natural cohesive sediments for deposition tests have been collected from Kwangyang Bay and total 18 deposition tests have been carried out on different bed shear stress respectively but with the same initial concentration. Test results for natural cohesive sediments of Kwangyang bay show that minimum bed shear stress ${\tau}_{bmin}$, standard deviation ${\sigma}_1$, and time scale parameter $({\tau}_b^*-1)_{50}$ are $0.11N/m^2$, 0.68 and 0.85, respectively. Through the comparison with results of previous studies for other sediments, the results of this study are shown to be good enough to verify.

An Experimental Study on Depositional Properties of Cohesive Sediments in Masan Port (마산항 점착성 퇴적물의 퇴적특성에 대한 실험적 연구)

  • Yang, Su-Hyun;Kim, Nam Hun;Hwang, Kyu-Nam
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.27 no.6
    • /
    • pp.434-442
    • /
    • 2015
  • In this study, a series of deposition tests have been performed using an annular flume in order to estimate depositional parameter of natural sediments. The sediment of Masan Port has been collected for deposition tests, and total 18 deposition tests have been carried out on different bed shear stress respectively but with the same initial concentration. As the results, the minimum bed shear stress ${\tau}_{bmin}$, standard deviation ${\sigma}1$ and time scale parameter $({\tau}_b^*-1)_{50}$ are found to be $0.10N/m^2$, 0.54 and 0.87 respectively. Through comparing with results from previous studies for other sediments, the results of this study are shown to be good enough to verify.

A Study on Biofilm Detachment in an IFBBR (역 유동층 생물막 반응기에서의 생물막 탈착에 관한 연구)

  • 김동석;박영식
    • Journal of Environmental Science International
    • /
    • v.3 no.3
    • /
    • pp.263-271
    • /
    • 1994
  • A detachment of biofilm was investigated in an inverse fluidized bed biofilm reactor(IFRBR). The biofilm thickness, 5 and the bioparticle density, Pm were decreased by the increase of Reynolds number, Re and the decrease of biomass concentration, h. The correlations were expressed as $\delta$=6l.6+16.33$b_c$-0.004Re and Ppd=0.3+0.027$b_c$- 2.93x$l0^{-5}$ no by multiple linear regression analysis method. Specific substrate removal rate, q was derived by F/M ratio and biofilm thickness as q=0.44.+0.82F/M-5.Ix10$-4^{$\delta$}$. Specific biofilm detachment rate, bds was influenced by FIM ratio and Reynolds number as $b_{ds}$=-0.26+0.26F/M+ 2.17$\times$$10^{-4}$Re. Specific biofilm deachment rate in an IFBBR was higher than that in a FBRR(fluidized bed biofilm reactor) because of the friction between air bubble and the bioparticles.

  • PDF

Wave-Current Friction in Rough Turbulent Flow (전난류에서 파랑과 해류의 마찰력)

  • 유동훈
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.6 no.3
    • /
    • pp.226-233
    • /
    • 1994
  • The present paper considers the method to estimate the bottom friction driven by waves and current on rough turbulent flow. Parameter adjusting technique is suggested for the computation of bed shear stress driven by uni-directional flow. and the value of parameter is determined by comparing the computational results against Bijker's laboratory data. For the computation of combined flow bottom shear stress, two methods are presented; one is the modified Bijker approach (BYO Model) and the other is the modified Fredsoe approach (FY Model). both of which are refined by the present writer. Both models are again refined in two aspects, and tested against the Bijker's laboratory data.

  • PDF

A Study on Roughness Coefficient Estimations in Gravel Bed Stream without Water Level-Discharge Data (수위-유량자료가 부재한 자갈하천의 조도계수 산정에 관한 연구)

  • Lee, Sin-Jae;Park, Sang-Woo
    • Journal of Korea Water Resources Association
    • /
    • v.39 no.12 s.173
    • /
    • pp.985-996
    • /
    • 2006
  • This study developed a model that could calculate equivalent roughness using shear stress acting on distributed grains in gravel bed stream. The estimated equivalent roughness by the model developed was used for estimation of water level and roughness coefficient in the stream without water level-discharge data. The model was applied to the Gurey-Songjeong stage station section located in the Sumjin river mid-downstream. The equivalent roughness by the model developed in this study was estimated to be 0.194m at the Gurey stage station. Calculated water level which the estimated equivalent roughness was applied to the flow model was shown ewer of within 6% in comparison with observed water level. Also, roughness coefficient was estimated using observed and calculated water level about each discharge scale by unsteady flow analysis. As a result, error of roughness coefficient estimated by observed and calculated water level was shown error of $0{\sim}0.002$ and could consider variability of roughness coefficient.

Determination of Permissible Shear Stresses on Vegetation Mats by Soil Loss Evaluation (토양 손실 평가에 의한 식생매트의 허용 소류력 결정)

  • Lee, Du Han;Rhee, Dong Sop;Kim, Myounghwan
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.11
    • /
    • pp.5956-5963
    • /
    • 2013
  • By the activation of environment-friendly river works, application of vegetation mats is increasing, however, evaluation techniques for hydraulic stability of vegetation mats are not presented. This study is conducted to develop the objective test method for vegetation mats. Two kind of vegetation mats are tested by the real scale experiments, and hydraulic quantities are measured and analyzed to evaluate acting shear stresses. To evaluate soil loss, Terrestrial 3D LiDAR measurement is conducted and soil loss index are calculated from changes of bed elevation. Quantified evaluation for permissible shear stresses is conducted by graphical method for acting shear stresses and soil loss index. By the results of precision survey, changes of sub soil are limited to local range in stable cases and relatively large changes of sub soil which is similar to natural river bed are detected in unstable cases. From the study, evaluation of permissible shear stresses by ASTM D 6040 is avaliable in the failure mechanism and failure criteria by soil loss index.

Shear modulus and stiffness of brickwork masonry: An experimental perspective

  • Bosiljkov, Vlatko Z.;Totoev, Yuri Z.;Nichols, John M.
    • Structural Engineering and Mechanics
    • /
    • v.20 no.1
    • /
    • pp.21-43
    • /
    • 2005
  • Masonry is a composite non-homogeneous structural material, whose mechanical properties depend on the properties of and the interaction between the composite components - brick and mortar, their volume ratio, the properties of their bond, and any cracking in the masonry. The mechanical properties of masonry depend on the orientation of the bed joints and the stress state of the joints, and so the values of the shear modulus, as well as the stiffness of masonry structural elements can depend on various factors. An extensive testing programme in several countries addresses the problem of measurement of the stiffness properties of masonry. These testing programs have provided sufficient data to permit a review of the influence of different testing techniques (mono and bi-axial tests), the variations caused by distinct loading conditions (monotonic and cyclic), the impact of the mortar type, as well as influence of the reinforcement. This review considers the impact of the measurement devices used for determining the shear modulus and stiffness of walls on the results. The results clearly indicate a need to re-assess the values stated in almost all national codes for the shear modulus of the masonry, especially for masonry made with lime mortar, where strong anisotropic behaviour is in the stiffness properties.