DOI QR코드

DOI QR Code

A Study on Roughness Coefficient Estimations in Gravel Bed Stream without Water Level-Discharge Data

수위-유량자료가 부재한 자갈하천의 조도계수 산정에 관한 연구

  • Published : 2006.12.31

Abstract

This study developed a model that could calculate equivalent roughness using shear stress acting on distributed grains in gravel bed stream. The estimated equivalent roughness by the model developed was used for estimation of water level and roughness coefficient in the stream without water level-discharge data. The model was applied to the Gurey-Songjeong stage station section located in the Sumjin river mid-downstream. The equivalent roughness by the model developed in this study was estimated to be 0.194m at the Gurey stage station. Calculated water level which the estimated equivalent roughness was applied to the flow model was shown ewer of within 6% in comparison with observed water level. Also, roughness coefficient was estimated using observed and calculated water level about each discharge scale by unsteady flow analysis. As a result, error of roughness coefficient estimated by observed and calculated water level was shown error of $0{\sim}0.002$ and could consider variability of roughness coefficient.

본 연구는 자갈하천에서 하상에 분포하는 입자에 작용하는 전단력을 이용하여 등가조도를 산정할 수 있는 모형을 개발하였다. 산정된 등가조도는 수위-유량자료가 부재한 하천에서 유량에 대한 수위를 산정하고 조도계수를 산정하는데 이용하였다. 대상하천은 섬진강의 중 하류부인 구례수위표와 송정수위표 구간으로 선정하였다. 등가조도는 개발된 모형에 의해 구례수위표지점에서 0.194m가 산정되었다. 산정된 등가조도를 흐름모형에 적용하여 계산된 수위유량자료를 관측된 자료와 비교한 결과 6% 이내의 오차를 보였다. 조도계수는 대상구간에 대해 부정류 해석을 실시하여 유량규모별로 계산된 수위와 관측된 수위에 대해 산정하였다. 그 결과 관측된 수위와 계산된 수위에 의해 산정된 조도계수는 $0{\sim}0.002$의 오차를 보였고, 조도계수의 가변성도 고려할 수 있었다.

Keywords

References

  1. 건교부 (2003). 섬진강수계 유량측정 조사용역 보고서
  2. 건교부 (2003). 섬진강수계 하천정비기본계획 보고서
  3. 김선민, 정관수 (2005). '부정류 모형을 이용한 하천 조도계수 산정 및 산정오차의 수면곡선에 대한 민감도 분석.' 2005년 한국수자원학회 학술발표회 논문집, 한국수자원학회
  4. 김 원, 김양수, 우효섭 (1995). '부정류 모형을 이용한 한강 하류부 하도의 조도계수 산정.' 한국수자원학회논문집, 한국수자원학회, 제28권, 제6호, pp. 133-146
  5. 김진수, 전경수, 이길성 (2005). 'FLDWAVE 모형의 가변 조도계수 자동추정에 관한 연구' 한국수자원학회 학술발표회 논문집, 한국수자원학회
  6. 우효섭 (2001). 하천수리학. 동명사, pp. 361-368
  7. 윤태훈, 이종욱, 제갈선동 (2000). '동수역학모형의 매개변수 산정.' 한국수자원학회논문집, 제33권, 제1호, pp. 39-50
  8. 이정규, 이창현 (2003). '수리학적 홍수추적 모형을 이용한 한강하류부의 조도계수 산정.' 한국수자원학회 학술발표회 논문집, 한국수자원학회
  9. Brownlie, W.R. (1983). 'Flow Depth in Sand-Bed Channels.' Journal of Hydraulic Engineering, ASCE, Vol. 109, No.7. pp. 959-990 https://doi.org/10.1061/(ASCE)0733-9429(1983)109:7(959)
  10. Coleman, N.L. (1967). 'A Theoretical and Experimental Study of Drag and Lift Forces Acting on a Sphere Resting on a Hypothetical Stream Bed.' Proc., 12th Congress, IAHR, Vol. 3, Sept
  11. Einstein, H.A. and El-Sayed A. El-Samni, (1949). 'Hydrodynamic Forces on a rough Wall.' Rev. Mod. Phys., 21, pp. 520-524 https://doi.org/10.1103/RevModPhys.21.520
  12. Gomeze B. (1993). 'Roughness of stable, Armored Gravel Beds.' Water Resoures Research, Vol. 29, No. 11, pp. 3631-3642 https://doi.org/10.1029/93WR01490
  13. Hey, R.D. (1979). 'Flow Resistance in Grabel-Bed Rivers.' Journal of the Hydraulics Division, ASCE, Vol. 105, No.4, pp. 365-379
  14. Henderson, F.M. (1966). Open Channel Flow. Macmillan Publishing Co,, Inc., New York
  15. Keulegan, G.H. (1938). 'Laws of Turbulient Flow in Open Channels.' Journal of Research of the National Bureau of Standards, Vol. 21, Reserch Paper 1151, pp. 707-741 https://doi.org/10.6028/jres.021.039
  16. Limerinos, J.T. (1970). 'Determination of the manning Coefficient for Measured Bed Roughness in Natural Channels.' Water Supply paper 1898-B, United States Geological Survey, Washington D.C
  17. Martin, V. (2003). Hydraulic Roughness of Armoured Gravel Beds : the Role of Grain Protrusion Ph.D. dissertation, University of British, Columbia
  18. Nikuradse, J. (1933). 'Stromungsgesetze in rauhen Rohren', Forschg. Arb. Ing. Wes., 361, 22.(English translation, Laws of flow in rough pipes, Tech. Memo. 1292, Natl. Advis. Comm. For Aeron, Washington, D.C., 1950.)
  19. Normand Emile, B. (1994). An Analysis of Flow Velocity Profiles, Stream bed Roughness, and Resistance to flow in natural Gravel Bed Streams. Ph.D, dissertation, State University of New York, Buffalo
  20. Pope, S.B. (2000). Turbulent flows. Cambridge University Press
  21. Petryk, S., Bosmajian, G. (1975). 'Analysis of Flow Through Vegetation.' Journal of the Hydraulics Division, ASCE, Vol. 101, No.7, pp. 871-884
  22. Thorne, C.R., Zevenbergen, L.W. (1985). 'Estimating Mean Velocity in mountain Rivers.' Journal of Hydraulic Engineering, ASCE, Vol. 111, No.4, pp. 612-624 https://doi.org/10.1061/(ASCE)0733-9429(1985)111:4(612)
  23. Wark, J.B., Samuels, P.G., and Ervine, D.V. (l990). A Practical Method of Estimating Velocity and Discharge in a Compound Channel, Flood Hydr., W. R. while, ed., John Wiley and Sons, Inc., Chichester England, pp. 163-172
  24. Zegzhda, A.P. (1938). Theoriia Podobiiai Metodika Rascheta Gldrotekhnicheskikh Modelei(Theory of Similality and Methods of Desgin of Models for Hydraulic Engineering), Gosstroiizdat, Lenningrad, U.S.S.R

Cited by

  1. Prediction of Stage Discharge Curve and Lateral Distribution of Unit Discharge in an Arbitrary Cross Section Channel with Floodplain Vegetation vol.44, pp.2, 2011, https://doi.org/10.3741/JKWRA.2011.44.2.157
  2. Review of Roughness Coefficient Characteristics for Rivers in Korea vol.44, pp.9, 2011, https://doi.org/10.3741/JKWRA.2011.44.9.695
  3. An Estimation of Roughness Coefficient in a Channel with Roughness Correction Blocks vol.34, pp.1, 2014, https://doi.org/10.12652/Ksce.2014.34.1.0107
  4. Evaluation of River Flood Stability after River Restoration vol.9, pp.10, 2009, https://doi.org/10.5392/JKCA.2009.9.10.417