• Title/Summary/Keyword: Bearing Accuracy

Search Result 307, Processing Time 0.02 seconds

Estimating pile setup parameter using XGBoost-based optimized models

  • Xigang Du;Ximeng Ma;Chenxi Dong;Mehrdad Sattari Nikkhoo
    • Geomechanics and Engineering
    • /
    • v.36 no.3
    • /
    • pp.259-276
    • /
    • 2024
  • The undrained shear strength is widely acknowledged as a fundamental mechanical property of soil and is considered a critical engineering parameter. In recent years, researchers have employed various methodologies to evaluate the shear strength of soil under undrained conditions. These methods encompass both numerical analyses and empirical techniques, such as the cone penetration test (CPT), to gain insights into the properties and behavior of soil. However, several of these methods rely on correlation assumptions, which can lead to inconsistent accuracy and precision. The study involved the development of innovative methods using extreme gradient boosting (XGB) to predict the pile set-up component "A" based on two distinct data sets. The first data set includes average modified cone point bearing capacity (qt), average wall friction (fs), and effective vertical stress (σvo), while the second data set comprises plasticity index (PI), soil undrained shear cohesion (Su), and the over consolidation ratio (OCR). These data sets were utilized to develop XGBoost-based methods for predicting the pile set-up component "A". To optimize the internal hyperparameters of the XGBoost model, four optimization algorithms were employed: Particle Swarm Optimization (PSO), Social Spider Optimization (SSO), Arithmetic Optimization Algorithm (AOA), and Sine Cosine Optimization Algorithm (SCOA). The results from the first data set indicate that the XGBoost model optimized using the Arithmetic Optimization Algorithm (XGB - AOA) achieved the highest accuracy, with R2 values of 0.9962 for the training part and 0.9807 for the testing part. The performance of the developed models was further evaluated using the RMSE, MAE, and VAF indices. The results revealed that the XGBoost model optimized using XGBoost - AOA outperformed other models in terms of accuracy, with RMSE, MAE, and VAF values of 0.0078, 0.0015, and 99.6189 for the training part and 0.0141, 0.0112, and 98.0394 for the testing part, respectively. These findings suggest that XGBoost - AOA is the most accurate model for predicting the pile set-up component.

A Conceptual Algorithm for Determining the Spacing of Standard Penetration Test Spots. (표준관입시험 간격 결정을 위한 개념적 알고리즘)

  • Habimana, Gilbert;Lee, Donghoon;Han, Kyung-Bo;Kim, Sunkuk
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2015.11a
    • /
    • pp.185-186
    • /
    • 2015
  • The Standard penetration test determines the type of soil according to soil bearing capacity, and this classifies the subsoil into many layers. Construction project managers are willing to know the depth of the present types of subsoil on site in order to make plans on earthwork stage during excavation. However the standard penetration test may not provide accurate information on subsoil type due to incorrect spacing. To solve this problem, this study propose a conceptual algorithm for determining the spacing of standard penetration test spots to essentially tests relevant locations on which to be applied the standard penetration test. This provides the acquirement of the accurate layered model volume of earthwork revised into geological columnar section. This algorithm will determine the appropriate standard penetration test spots spacing on a given size of site to optimize the accuracy of the earthwork volume, time and cost.

  • PDF

Ultrasonic Measurement of Interfacial Layer Thickness of Sub-Quarter-Wavelength

  • Kim, No-Hyu;Lee, Sang-Soon
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.23 no.6
    • /
    • pp.577-582
    • /
    • 2003
  • This paper describes a new technique for thickness measurement of a very thin layer less than one-quarter of the wavelength of ultrasonic wave used in the ultrasonic pulse-echo measurements. The technique determines the thickness of a thin layer in a tapered medium from constructive interference of multiple reflection waves. The interference characteristics are derived and investigated in theoretical and experimental approaches. Modified total reflection wave g(t) defined as difference between total and first reflection waves increases in amplitude as the interfacial layer thickness decreases down to zero. A layer thickness less than one-tenth of the ultrasonic wavelength is measured using the maximum amplitude of g(t) with a good accuracy and sensitivity. The method also requires no inversion process to extract the thickness information from the waveforms of reflected waves, so that it makes possible to have the on-line thickness measurement of a thin layer such as a lubricating oil film in thrust bearings and journal bearings during manufacturing process.

The Strength of Composite Control Rod Joint under the Pin Loading (핀하중을 받는 복합재 조종봉 체결부의 강도)

  • 박노회;안현수;권진회;최진호;양승운;김광수
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2001.05a
    • /
    • pp.159-162
    • /
    • 2001
  • A combined finite element and experimental study based on the characteristic length method is performed to investigate the strength and behavior of the pin joint in composite control rod. The failure is estimated by the Yamada-Sun and Tsai-Wu criteria on the characteristic curve. The gap elements are used to simulate the contact between the pin and the composite fitting with hole. The accuracy and applicability of the method are validated by the joint tests. All the specimens were failed in the bearing mode in the test and finite element analysis, and good agreement was found between the predicted and test results on the joint strength of composite control rod.

  • PDF

Image recognition technology in rotating machinery fault diagnosis based on artificial immune

  • Zhu, Dachang;Feng, Yanping;Chen, Qiang;Cai, Jinbao
    • Smart Structures and Systems
    • /
    • v.6 no.4
    • /
    • pp.389-403
    • /
    • 2010
  • By using image recognition technology, this paper presents a new fault diagnosis method for rotating machinery with artificial immune algorithm. This method focuses on the vibration state parameter image. The main contribution of this paper is as follows: firstly, 3-D spectrum is created with raw vibrating signals. Secondly, feature information in the state parameter image of rotating machinery is extracted by using Wavelet Packet transformation. Finally, artificial immune algorithm is adopted to diagnose rotating machinery fault. On the modeling of 600MW turbine experimental bench, rotor's normal rate, fault of unbalance, misalignment and bearing pedestal looseness are being examined. It's demonstrated from the diagnosis example of rotating machinery that the proposed method can improve the accuracy rate and diagnosis system robust quality effectively.

A Study on the Improvement of Adhesive Mixing Ratio about Acoustic Window for Enhancing SONAR Performance of Submarine (수중함 소나 수신성능 향상을 위한 음향창 접착제 배합비 개선)

  • Ham, Younghoon;Kim, Joonwoo;Chang, Hoseong
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.21 no.4
    • /
    • pp.481-488
    • /
    • 2018
  • This study suggest the improvement of the CFRP adhesive mixing ratio about acoustic window to enhance SONAR performance. The CFRP of submarine is produced by allocation an acoustic window zone by the beam width of SONAR sensors. During the sea trial, SONAR system's bearing and range accuracy data is not in tolerance due to debonding phenomenon on CFRP. The inappropriate mixing ratio of adhesives caused that peeling phenomenon occurred in the acoustic window part, which is the reason for the deterioration of SONAR sensors performance. The report includes explanation of test procedure of SONAR, root cause analysis, CFRP manufacturing procedure, laboratory tests results, and proof of the performance at the sea trial.

Process and Die Design for the Forming of Flanged Thrust Engine Bearings (플랜지를 가진 추력 엔진베어링의 성형공정 및 금형 설계)

  • 김형종;곽인구
    • Transactions of Materials Processing
    • /
    • v.9 no.5
    • /
    • pp.478-485
    • /
    • 2000
  • This study aims to Improve the productivity in forming of flanged thrust engine bearings from two kinds of laminated sheet materials by integrating the forming processes or by reducing the number of the subsequent sizing and machining processes or by modifying the forming tools used. For steel-Al rolled blank, a design scheme for the one-step forming operation and the geometry of the tool set required is suggested and is verified its usefulness by the finite element simulation. And for steel-Cu sintered blank, the results of experiment and finite element analysis show that it is possible to improve the dimensional accuracy of formed products and to reduce the number of sizing processes just by modifying the shape and dimensions of initial blanks and flange forming dies, and by controlling the spring force.

  • PDF

Identification of joint dynamics of mechanical structures using condensed F.E.M. model and experimental modal analysis (축약된 유한요소 모델과 실험적 모우드 해석을 이용한 기계구조물의 연결부 동특성 규명)

  • 최병욱;박병호;김광준
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.12 no.3
    • /
    • pp.426-439
    • /
    • 1988
  • Dynamic properties such as stiffness and damping of mechanical joints are essential for the accurate prediction of the dynamic behaviors of the system and subsequent improvement of the design. So far several techniques, analytical, experimental, or both have been developed. A technique using condensed F.E.M. model and Experimental Modal Analysis is presented to identify the joint structural parameters. First, modal parameters of structure are measured by certain complex frequency obtained from experiment to match with the order of the Experimental Modal Analysis model. Finally by equating the modal parameters obtained from experiment with those of the condensed system, the unknown joint structural parameters can be identified. A simulation study is conducted to investigate the accuracy of technique. The experiments are performed with ball bearings in a rotor bearing system.

A Study on Improvement of the Stick-slip Induced an Effect Decrease of the Table Weight (테이블 중량 감소 효과에 따른 스틱슬립 개선에 관한 연구)

  • 홍성오;조규재
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.11 no.5
    • /
    • pp.7-14
    • /
    • 2002
  • In order to achieve high precision machine tools, the research for performance enhancement of feed drive systems is required. Development of the high speed feed drive system has been a major issue for the past few decades in machine tool indestries. Because table levitation system decrease the table weight, an effect of reaction by weight is minimized and lost motion can be removed at maximum. In case fled system is designed with drive motor, ball screw and support bearing load capacity selection, an effect of decrease of the table weight exist. So, the table weight through an effect of decrease call it into the realization of cost down. Stick-slip friction has a great influence on the contouring accuracy of CNC machine tools. In this paper table levitation system has been developed for the stick-slip in a fled drive systems.

A Method of Accurate Position Control with a Pneumatic Cylinder Driving Apparatus

  • Jang Ji-Seong;Byun Jung-Hoan
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.7
    • /
    • pp.993-1001
    • /
    • 2006
  • In this paper, a method of accurate position control using a pneumatic cylinder driving apparatus is presented. To overcome the effect of friction force and transmission line, low friction type cylinder applied externally pressurized air bearing structure is used and two control valves attached both side of the cylinder directly. To compensate nonlinear characteristics of control valves, linearized control input derived from the relation between control input and effective area of control valve, and dither signal are applied to the valve. The controller applied to the pneumatic cylinder driving apparatus is composed of a state feedback controller and a disturbance observer. Experimental results show that the effectiveness of the proposed method and position control error of $5{\mu}m$ accuracy could be obtained easily.