• 제목/요약/키워드: Beams and Strips

검색결과 72건 처리시간 0.023초

Analysis and modeling of hyperstatic RC beam bonded by composite plate symmetrically loaded and supported

  • Abderezak, Rabahi;Daouadji, Tahar Hassaine;Rabia, Benferhat
    • Steel and Composite Structures
    • /
    • 제45권4호
    • /
    • pp.591-603
    • /
    • 2022
  • The flexural strengthening of reinforced concrete beams by external bonding of composite materials has proved to be an efficient and practical technique. This paper presents a study on the flexural performance of reinforced concrete continuous beams with three spans (one span and two cantilevered) strengthened by bonding carbon fiber fabric (CFRP). The model is based on equilibrium and deformations compatibility requirements in and all parts of the strengthened continuous beam, i.e., the continuous concrete beam, the FRP plate and the adhesive layer. The adherend shear deformations have been included in the present theoretical analyses by assuming a linear shear stress through the thickness of the adherends. Remarkable effect of shear deformations of adherends has been noted in the results. The theoretical predictions are compared with other existing solutions that shows good agreement, and It shows the effectiveness of CFRP strips in enhancing shear capacity of continuous beam. It is shown that both the normal and shear stresses at the interface are influenced by the material and geometry parameters of the composite beam.

Optimum amount of CFRP for strengthening shear deficient reinforced concrete beams

  • Gemi, Lokman;Alsdudi, Mohammed;Aksoylu, Ceyhun;Yazman, Sakir;Ozkilic, Yasin Onuralp;Arslan, Musa Hakan
    • Steel and Composite Structures
    • /
    • 제43권6호
    • /
    • pp.735-757
    • /
    • 2022
  • The behavior of shear deficient under-balanced reinforced concrete beams with rectangular cross-sections, which were externally strengthened with CFRP composite along shear spans, was experimentally investigated under vertical load. One of the specimens represents a reference beam without CFRP strengthening and the other specimens have different width/strip spacing ratios (wf/sf). The optimum strip in terms of wf/sf, which will bring the beam behavior to the ideal level in terms of strength and ductility, was determined according to the regulations. When the wf/sf ratio exceeds 0.55, the behavior of the beam shifted from shear failure to bending failure. However, it has been observed that the wf/sf ratio should be increased up to 0.82 in order for the beam to reach sufficient shear reserve value according to the codes. It is also observed that the direction and weight of the CFRP composite are one of the most critical factors and 240 gr/m2 CFRP strips experienced sudden ruptures in the shear span after the cracking of the concrete. It is considered as a deficiency that the empirical shear capacity formulas given for the beams reinforced with CFRP in the regulations do not take into account both direction and weight of CFRP composites.

Behavior of CFRP strengthened RC multicell box girders under torsion

  • Majeed, Abeer A.;Allawi, Abbas A.;Chai, Kian H.;Badaruzzam, Hameedon W. Wan
    • Structural Engineering and Mechanics
    • /
    • 제61권3호
    • /
    • pp.397-406
    • /
    • 2017
  • The use of fiber reinforced polymer (FRP) for torsional strengthening of reinforced concrete (RC) single cell box beams has been analyzed considerably by researchers worldwide. However, little attention has been paid to torsional strengthening of multicell box girders in terms of both experimental and numerical research. This paper reports the experimental work in an overall investigation for torsional strengthening of multicell box section RC girders with externally-bonded Carbon Fiber Reinforced Polymer CFRP strips. Numerical work was carried out using non-linear finite element modeling (FEM). Good agreement in terms of torque-twist behavior, steel and CFRP reinforcement responses, and crack patterns was achieved. The unique failure modes of all the specimens were modeled correctly as well.

탄소섬유 보강재로 표면매립공법에 의해 보강된 콘크리트 보의 보강성능 연구 (A Study for strengthening Capacity of concrete Beam Strengthened with Near-Surface Mounted Carbon Fiber Reinforced Polymer)

  • 오홍섭;심종성;주민관;권영락
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2006년도 추계 학술발표회 논문집
    • /
    • pp.145-148
    • /
    • 2006
  • Near surface mounted (NSM) is a recent strengthening technique based on bonding fiber reinforced polymer (CFRP) bars (rods and laminate strips), the use of NSM FRP bars is Emerging as a promising technology for increasing flexural strength of deficient concrete. In order for this technique to perform effectively, the structural behaviour of RC element strengthened with NSM FRP bars to be fully characterized. Totally, 10 beams were tested using symmetrical two-point loads test. The parameters examined under the beam test were a diffrent type of strengthening length.

  • PDF

2방향 형상기억효과 SMA 띠가 부착된 복합재 보의 거동 (Smart Composite Beams with Shape Memory Alloy Strips Having TWSME)

  • 김정택;김철;윤지원
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2005년도 춘계학술발표대회 논문집
    • /
    • pp.51-54
    • /
    • 2005
  • Shape memory alloys (SMAs) find many applications in smart composite structural systems as the active components. Their ability to provide a high force and large displacement makes them an excellent candidate for an actuator for controlling the shape of smart structures. In this paper, using a macroscopic model that captures the thermo-mechanical behaviors and the two-way shape memory effect (TWSME) of SMAs smart morphing polymeric composite shell structures like shape-changeable UAV wings is demonstrated and analyzed numerically and experimentally when subjected to various kinds of pressure loads. The controllable shapes of the morphing shells to that thin SMA strip actuator are attached are investigated depending on various phase transformation temperatures. SMA strips start to transform from the martensitic into the austenitic state upon actuation through resistive heating, simultaneously recover the prestrain, and thus cause the shell structures to deform three dimensionally. The behaviors of composite shells attached with SMA strip actuators are analyzed using the finite element methods and 3-D constitutive equations of SMAs. Several morphing composite shell structures are fabricated and their experimental shape changes depending on temperatures are compared to the numerical results. That two results show good correlations indicates the finite element analysis and 3-D constitutive equations are accurate enough to utilize them for the design of smart composite shell structures for various applications.

  • PDF

작은 탄성 변형률 하의 고정-자유 지지된 스트립과 보의 변형 (Deformations of Cantilever Strips and Beam with Small Elastic Strains)

  • 호광수;박기철;임세영
    • 대한기계학회논문집
    • /
    • 제13권4호
    • /
    • pp.572-582
    • /
    • 1989
  • 본 논문에서는 윗면에 균일한 압력을 받는 외팔보의 굽힘 변형과 고정 자유 지지된 무한길이 스트립의 폭 방향 굽힘변형을 위에 언급된 이론을 적용하여 살펴보고자 한다. 먼저 기본 지배방정식들을 요약하여 변형률의 1차항까지 나타내며 각 경우에 대해 변형을 중심선에 상대적인 단면의 변위와 단면의 회전 그리고 병진을 나타내며 각 경우에 대해 변형을 중심선에 상대적인 단면의 변위와 단면의 회전 그리고 병진을 나타내는 도심의 변위로 분해하고 도심에 상대적인 변위는 Michell에 의한 평판의 해와 St. Venant에 의한 봉의 해를 이용한다. 가정된 변위장으로부터 응력을 구한 다음 적절한 조건 하에서 국부평형방정식을 구하여 전체평형방정식을 유도한다. 또한 이로부터 각 단면의 회전과 중심선의 변위가 구해질 수 있음을 보인다.

복합재료로 보강된 집성보의 휨 실험에 대한 연구 (Study on the Bending Test of Glulam Beam Reinforced with GFRP Strips)

  • 김영찬
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제3권2호
    • /
    • pp.199-204
    • /
    • 1999
  • 최근에 복합재료는 콘크리트, 집성보와 같은 기존의 구조재를 보강하여 성능을 향상시킬 목적으로 적용되고 있다. 특히, 대규모의 집성보 구조물은 춤이 큰 부재를 필요로 하는데 섬유보강판을 이용하여 보의 상하부를 보강하면 춤을 크게 하지 않고도 보의 강도와 강성을 증가시킬 수 있다. 본 연구에서는 집성보에 유리섬유보강 플라스틱판(GFRP)을 붙여 스팬 중앙에 집중하중을 가한 휨실험을 수행하였고 실험결과를 층간이론을 이용한 수치해석법과 비교하였다.

  • PDF

선릉 정자각 목부재의 연륜연대 분석 (Tree-Ring Dating of Wood Elements for Jeongjagak of Seonreung, Seoul, Korea)

  • 손병화;한상효;박원규
    • 한국가구학회지
    • /
    • 제23권2호
    • /
    • pp.222-228
    • /
    • 2012
  • Seonreung is the tomb of Seong-jong (A.D. 1457~1494), the 9th king of Joseon Dynasty (1392-1910) and his second queen Jeonghyeon-wanghu (1462~1530). We obtained dendrochronological dates of Jeongjagak (ceremonial hall) of Seonreung. It was known first built in 1495 and reconstructed in October 1706, We obtained tree-ring dates of 20 wood elements (beams, pillars, truss posts, cant strips, roof boards and roof loaders). Their outermost rings were dated from 1630 to 1705. The dates of bark rings in four elements were A.D. 1705 with completed latewoods, indicating that these woods were cut some time between the autumn of 1705 and spring of 1706. The results confirmed the reconstruction date Jeongjagak of Seonreung in 1706, suggesting that there was not so long period for wood drying or storage, i.e., less than 6 months. The dates of outermost rings prior to 1705 in other elements indicated that some outer rings of these elements were removed during wood processing. Tree-ring dating proved that the present Jeongjagak of Seonreung had been well preserved for more than 300 years.

  • PDF

Flexural Strength of RC Beam Strengthened by Partially De-bonded Near Surface-Mounted FRP Strip

  • Seo, Soo-yeon;Choi, Ki-bong;Kwon, Young-sun;Lee, Kang-seok
    • International Journal of Concrete Structures and Materials
    • /
    • 제10권2호
    • /
    • pp.149-161
    • /
    • 2016
  • This paper presents an experimental work to study the flexural strength of reinforced concrete (RC) beams strengthened by partially de-bonded near surface-mounted (NSM) fiber reinforced polymer (FRP) strip with various de-bonded length. Especially, considering high anchorage capacity at end of a FRP strip, the effect of de-bonded region at a central part was investigated. In order to check the improvement of strength or deformation capacity when the bonded surface area only increased without changing the FRP area, single and triple lines of FRP were planned. In addition, the flexural strength of the RC member strengthened by a partially de-bonded NSM FRP strip was evaluated by using the existing researchers' strength equation to predict the flexural strength after retrofit. From the study, it was found that where de-bonded region exists in the central part of a flexural member, the deformation capacity of the member is expected to be improved, because FRP strain is not to be concentrated on the center but to be extended uniformly in the de-bonded region. Where NSM FRP strips are distributed in triple lines, a relatively high strength can be exerted due to the increase of bond strength in the anchorage.

Compression Strength Size Effect on Carbon-PEEK Fiber Composite Failing by Kink Band Propagation

  • Kim, Jang-Ho
    • KCI Concrete Journal
    • /
    • 제12권1호
    • /
    • pp.57-68
    • /
    • 2000
  • The effect of structure size on the nominal strength of unidirectional fiber-polymer composites, failing by propagation of a kink band with fiber microbuckling, is analyzed experimentally and theoretically. Tests of novel geometrically similar carbon-PEEK specimens, with notches slanted so as to lead to a pure kink band (without shear or splitting cracks), are conducted. The specimens are rectangular strips of widths 15.875, 31.75. and 63.5 mm (0.625, 1.25 and 2.5 in and gage lengths 39.7, 79.375 and 158.75 mm (1.563, 3.125 and 6.25 in.). They reveal the existence of a strong (deterministic. non-statistical) size effect. The doubly logarithmic plot of the nominal strength (load divided by size and thickness) versus the characteristic size agrees with the approximate size effect law proposed for quasibrittle failures in 1983 by Bazant This law represents a gradual transition from a horizontal asymptote, representing the case of no size effect (characteristic of plasticity or strength criteria), to an asymptote of slope -1/2 (characteristic of linear elastic fracture mechanics. LEFM) . The size effect law for notched specimens permits easy identification of the fracture energy of the kink bandand the length of the fracture process zone at the front of the band solely from the measurements of maximum loads. Optimum fits of the test results by the size effect law are obtained, and the size effect law parameters are then used to identify the material fracture characteristics, Particularly the fracture energy and the effective length of the fracture process zone. The results suggest that composite size effect must be considered in strengthening existing concrete structural members such as bridge columns and beams using a composite retrofitting technique.

  • PDF