• Title/Summary/Keyword: Beam-column method

Search Result 493, Processing Time 0.021 seconds

An Exact Analysis of Steel Box Girders with the Effects of Distortional Deformation of Sections (단면변형의 효과를 포함한 강상자형 거더의 엄밀한 해석)

  • 진만식;이병주;김문영
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.17 no.1
    • /
    • pp.11-20
    • /
    • 2004
  • The main goal of this study is to develop MATLAB programming for an analysis of distortional deformations and stresses of the straight box girder. For this purpose, a distortional deformation theory is firstly summarized and then a BEF (Beam on Elastic Foundation) theory is presented using analogy of the corresponding variables. Finally, with governing equations of the beam-column element on elastic foundation, an exact element stiffness matrix of the beam element and nodal forces equivalent to concentrated and distributed loads are evaluated via a generalized linear eigenvalue problem. In order to verify the efficiency and accuracy of this method, distortional stresses of box girders with multiple diaphragms are presented and compared with results by FEA.

A fiber beam element model for elastic-plastic analysis of girders with shear lag effects

  • Yan, Wu-Tong;Han, Bing;Zhu, Li;Jiao, Yu-Ying;Xie, Hui-Bing
    • Steel and Composite Structures
    • /
    • v.32 no.5
    • /
    • pp.657-670
    • /
    • 2019
  • This paper proposes a one-dimensional fiber beam element model taking account of materially non-linear behavior, benefiting the highly efficient elastic-plastic analysis of girders with shear-lag effects. Based on the displacement-based fiber beam-column element, two additional degrees of freedom (DOFs) are added into the proposed model to consider the shear-lag warping deformations of the slabs. The new finite element (FE) formulations of the tangent stiffness matrix and resisting force vector are deduced with the variational principle of the minimum potential energy. Then the proposed element is implemented in the OpenSees computational framework as a newly developed element, and the full Newton iteration method is adopted for an iterative solution. The typical materially non-linear behaviors, including the cracking and crushing of concrete, as well as the plasticity of the reinforcement and steel girder, are all considered in the model. The proposed model is applied to several test cases under elastic or plastic loading states and compared with the solutions of theoretical models, tests, and shell/solid refined FE models. The results of these comparisons indicate the accuracy and applicability of the proposed model for the analysis of both concrete box girders and steel-concrete composite girders, under either elastic or plastic states.

A Study on the Optimal Design of Reinforced Concrete Slab-Beam-Column Structures by Direct Method (직접설계법(直接設計法)에 의한 철근(鐵筋)콘크리트 2방향(方向) 슬래브형(型) 구조체(構造體)의 최적설계(最適設計))

  • Kim, Yong Hee;Lyu, Hong Leal;Park, Moon Ho
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.5 no.1
    • /
    • pp.1-12
    • /
    • 1985
  • This study is conserned for the optimum design of reinforced concrete slab-beam-column structures with multi-storys and multi-bays by Direct Method. Flexural and shear strength, sectional size, and steel ratio etc., were considered as the design-constraints and the cost function was taken as to objective function. They became high degree nonlinear problems. Using SLP as an analytical method of nonlinear optimal problems, an optimal algorithm was developed in this study and the algorithm was applied to the optimization of reinforced concrete structure system of 5 storys. The result converged to a optimal solution with 3 to 5 iterations, and proved that economical design could be possible when compared with conventional designs.

  • PDF

Comparison of Limit Strength of Steel Cable-Stayed Bridges using Nonlinear Inelastic Displacement and Buckling Analyses (비선헝 비탄성 유한변위 해석 및 좌굴해석에 의한 강사장교의 극한강도 비교)

  • Kim Sung-Eock;Choi Dong-Ho;Ma Sang-Soo;Song Weon-Keun
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.18 no.3
    • /
    • pp.277-289
    • /
    • 2005
  • The study examines the limit strength for steel cable-stayed bridges. A case studies have been performed in order to evaluate the limit strength lot steel cable-stayed bridges using nonlinear inelastic analysis approach and bifurcation point instability analysis approach, effective tangent modulus $(E_f)$ method. To realize it, a practical nonlinear inelastic analysis condoling the initial shape is developed. In the initial shape analysis, updated structural configuration is introduced instead of initial member forces for beam-column members at every iterative step. Geometric and material nonlinearities of beam-column members are accounted by using stability function, and by using CRC tangent modulus and parabolic function, respectively Besides, geometric nonlinearity of cable members is accounted by using secant value of equivalent modulus of elasticity. The load-displacement relationships obtained by the proposed method are compared well with those given by other approaches. The limit strengths evaluated by the proposed nonlinear inelastic analysis for the proposed cable-stayed bridges with tee dimensional configuration compared with those by the inelastic bifurcation point instability analyses.

Load-Frequency Relationships of Continuous Compression Members (다 경간 압축재의 하중-진동수 관계)

  • 이수곤;김순철;임동혁
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1998.04a
    • /
    • pp.335-340
    • /
    • 1998
  • The apparently different physical problems of lateral vibration and elastic stability of a linear member are limiting cases of a single phenomenon, the more general expression being the mode of vibration with end thrust. For a single-span beam-column, it is generally known that the square of the frequency of lateral vibration is approximately linearly related to compressive axial force. In this paper the relationship between the frequency and axial force of multi-span compression members is investigated by means of the finite element method.

  • PDF

Performance of Beam Extractions for the KSTAR Neutral Beam Injector

  • Chang, D.H.;Jeong, S.H.;Kim, T.S.;Lee, K.W.;In, S.R.;Jin, J.T.;Chang, D.S.;Oh, B.H.;Bae, Y.S.;Kim, J.S.;Cho, W.;Park, H.T.;Park, Y.M.;Yang, H.L.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.240-240
    • /
    • 2011
  • The first neutral beam injector (NBI-1) has been developed for the Korea Superconducting Tokamak Advanced Research (KSTAR) tokamak. A first long pulse ion source (LPIS-1) has been installed on the NBI-1 for an auxiliary heating and current drive of KSTAR core plasmas. Performance of ion and neutral beam extractions in the LPIS-1 was investigated initially on the KSTAR NBI-1 system, prior to the neutral beam injection into the main plasmas. The ion source consists of a JAEA magnetic bucket plasma generator with multi-pole cusp fields and a set of KAERI prototype-III tetrode accelerators with circular apertures. The inner volume of plasma generator and accelerator column in the LPIS-1 is approximately 123 liters. Final design requirements for the ion source were a 120 kV/ 65 A deuterium beam and a 300 s pulse length. The extraction of ion beams was initiated by the formation of arc plasmas in the LPIS-1, called as an arc-beam extraction method. A stable ion beam extraction of LPIS-1 has been achieved up to an 100 kV/42 A for a 4 s pulse length and an 80 kV/25 A for a 14 s pulse length. Optimum beam perveance of 1.21 microperv has been found at an accelerating voltage of 80 kV. Neutralization efficiency has been measured by using a water flow calorimetry (WFC) method of calorimeter and an operation of bending magnet. The full-energy species of ion beams have been detected by using the diagnostic method of optical multichannel analyzer (OMA). An arc efficiency of the LPIS was 0.6~1.1 A/kW depending on the operating conditions of arc discharge.

  • PDF

Simple Analysis of the Properties of Condenser Lens 1 in SEM (SEM에서 접속 렌즈 1 의 특성에 대한 간단한 분석)

  • Lim, Sun-Jong
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.19 no.5
    • /
    • pp.705-709
    • /
    • 2010
  • It is quite complex to draw the geometry of electron trajectories in electron optics because such trajectories have various aberrations that cannot be easily calculated. However, if we need to know roughly the geometry, the focal length and the principal planes in order to understand the properties of column, a simple numerical solution can be a useful method. We are developing the electron beam machining system based on SEM. In this paper, we show rough geometry, focal length and principal planes by a numerical solution for electron lens I in our column. These results will be utilized in developing a simulation program for electron optics.

Application of Hybrid Structural System Using Coupled Vibration Control Structure and Seismic Isolated Structure in High-Rise Building

  • Nakajima, Shunsuke
    • International Journal of High-Rise Buildings
    • /
    • v.10 no.3
    • /
    • pp.219-227
    • /
    • 2021
  • This building is a forty-eight story, 170 meters high multiple dwelling house with Dual Frame System (DFS), a coupled vibration system connecting two independent structures with hydraulic dampers. Generation of large deformation between two structures during earthquakes contributes to make the hydraulic dampers effective. To improve the aseismic performance more, this building adopts DFS hybrid system that consists of DFS and base isolation system. About typical floors, columns and beams are constructed with LRV precast concrete method that shorten the construction period greatly by integrating column-beam joints in column members.

Effective Beam Width for Flat-Plate Systems Having Edge Beams under Lateral Loads (수평하중을 받는 테두리보가 있는 플랫플레이트 시스템의 유효보폭계수)

  • Han, Sang-Whan;Cho, Ja-Ock;Park, Young-Mi
    • Journal of the Korea Concrete Institute
    • /
    • v.20 no.2
    • /
    • pp.213-219
    • /
    • 2008
  • The purpose of this study is to propose frame analysis method for flat plate slabs having edge beam under lateral loads. Flat plate system is defined as the system only with slab of uniform thickness and column. However, the slab system generally incorporate edge beams at exterior connection in actual design. ACI 318 (2005) allows three methods for conducting flat plate system analysis subjected to lateral loads. There are the finite element method (FEM), the equivalent frame method (EFM), and the effective beam width method (EBWM). Among methods, the EBWM enables us to analyze practically by substituting the actual slab to beam element. In this model, the beam element has a thickness equal to that of the slab, and effective beam width equal to some fraction of the slab transverse width. However, the established EBWM was generally proposed for variables of geometry or stiffness reduction factor and seldom proposed for the effect of edge beams. This study verifies that, in the case of flat plate system having edge beams at exterior connections, the lateral stiffness is considerably larger than without edge beams. Therefore it need to analysis method for considered the effect of edge beams. In this study, an analysis model is proposed for the flat plate system having edge beams under lateral loads by considering the effect of edge beams. To verify the accuracy of proposed model, this study compared results of the proposed EBWM with results of FEM of flat plate systems having edge beams under lateral loads. Also, the proposed approach is compared with experimental results of former research.

Experimental seismic behaviour of L-CFST column to H-beam connections

  • Zhang, Wang;Chen, Zhihua;Xiong, Qingqing;Zhou, Ting;Rong, Xian;Du, Yansheng
    • Steel and Composite Structures
    • /
    • v.26 no.6
    • /
    • pp.793-808
    • /
    • 2018
  • In this study, the seismic performance of the connections between L-shaped columns composed of concrete-filled steel tubes (L-CFST columns) and H-beams used in high-rise steel frame structures was investigated. Seven full-scale specimens were tested under quasi-static cyclic loading. The variables studied in the tests included the joint type, the axial compression ratio, the presence of concrete, the width-to-thickness ratio and the internal extension length of the side plates. The hysteretic response, strength degradation, stiffness degradation, ductility, plastic rotation capacity, energy dissipation capacity and the strain distribution were evaluated at different load cycles. The test results indicated that both the corner and exterior joint specimens failed due to local buckling and crack within the beam flange adjacent to the end of the side plates. However, the failure modes of the interior joint specimens primarily included local buckling and crack at the end plates and curved corners of the beam flange. A design method was proposed for the flexural capacity of the end plate connection in the interior joint. Good agreement was observed between the theoretical and test results of both the yield and ultimate flexural capacity of the end plate connection.