• 제목/요약/키워드: Beam-Column

검색결과 1,542건 처리시간 0.032초

SFRHPC interior beam-column-slab joints under reverse cyclic loading

  • Ganesan, N.;Nidhi, M.;Indira, P.V.
    • Advances in concrete construction
    • /
    • 제3권3호
    • /
    • pp.237-250
    • /
    • 2015
  • Beam-column joints are highly vulnerable locations which are to be designed for high ductility in order to take care of unexpected lateral forces such as wind and earthquake. Previous investigations reveal that the addition of steel fibres to concrete improves its ductility significantly. Also, due to presence of slab the strength and ductility of the beam increases considerably and ignoring the effect of slab can lead to underestimation of beam capacity and defiance of strong column weak beam concept. The influence of addition of steel fibres on the strength and behaviour of steel fibre reinforced high performance concrete (SFRHPC) interior beam-column-slab joints was investigated experimentally. The specimens were subjected to reverse cyclic loading. The variable considered was the volume fraction of crimped steel fibres i.e., 0%, 0.5% and 1.0%. The results show that the addition of steel fibres improves the first crack load, strength, ductility, energy absorption capacity and initial stiffness of the beam.

지진하중을 받는 철근콘크리트 접합부의 강도 (Strength of Reinforced Concrete Beam-Column Assembles Subjected to Seismic Loading)

  • 이정윤;채희대
    • 한국지진공학회논문집
    • /
    • 제10권5호
    • /
    • pp.25-33
    • /
    • 2006
  • 본 논문에서는 지진하중을 받는 내부 및 외부 철근콘크리트 보-기둥 접합부의 강도 및 연성능력을 평가하였다. 접합부에 인접한 보에 소성힌지가 발생한 이후 접합부가 파괴할 경우 접합부 내력은 보의 소성힌지의 영향을 받아 감소하게 된다. 보에 소성힌지가 발생하면 보의 부재축방향 변형률은 급격하게 증가하게 되며, 증가된 부재축방향 변형률은 접합부의 변형에 영향을 주어 접합부의 강도를 저감시킨다. 이 논문에서는 보에 소성힌지가 발생하기 이전에 파괴하는 접합부의 내력과 보에 소성힌지가 발생한 이후에 파괴하는 접합부의 연성능력을 접합부의 변형능력 및 스트럿의 강도저감을 이용하여 평가하였다. 제시한 평가법은 52개의 접합부 실험체를 이용하여 검증하였다.

고강도 철근 및 고강도 콘크리트를 사용한 보-기둥 접합부의 연성거동 (Ductile Behavior of High Strength Reinforced Concrete Beam-Column Joint)

  • 이정한;유영찬;이원호;정헌수
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1999년도 학회창립 10주년 기념 1999년도 가을 학술발표회 논문집
    • /
    • pp.537-540
    • /
    • 1999
  • The primary objective of this study is to make a contribution to the construction of 40~60 story R/C high rise building by developing the reinforcing details which can improve the seismic performance of high-strength (f'c=700kg/$\textrm{cm}^2$, fy=4000, 8000kg/$\textrm{cm}^2$) R/C beam-column joints. And the purpose of this study is to investigate experimentally the effect of load history on the total energy dissipation capacity of reinforced concrete flexural members. The reinforcing details which can make beam plastic hinging zones moved and spreaded from the column face is proposed to insure the ductile behavior of high-strength RC beam-column joints. The intermediate reinforcement which is horizontally anchored by interlinking each intermediate reinforcements is proposed and tested to examine the mechanical performance of proposed details. Main variables are the shape of the intermediate reinforcements and yield strength of rebars. From the test results, the newly proposed intermediate reinforcement details can move and spread the beam plastic hinging zone about 1.0d from the column face.

  • PDF

보-기둥 접합부의 배근상세를 위한 Strut-and-Tie Model (Application of 상Strut-and-Tie상 Model for the Detailing of Beam-Column Joints)

  • 강원호
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1994년도 봄 학술발표회 논문집
    • /
    • pp.53-58
    • /
    • 1994
  • Beam-column joints of the skeleton structure can be classified as geometrical D-region, where the assumption of Bernoulli is not applicable. For the detailing of D-region in concrete structure, "Strut-and-Tie' Model is a very powerful tool, which has been widely used by practical engineers. This paper shows how the methodology of Strut-and-Tie Model can be applied for the various cases of beam-column joints. We can find this mechanical model does not give only an appropriate answer to the given problem but also a better insight to the structral behavior of beam-column joints.

  • PDF

전자빔 가공시스템용 경통의 구축 (Establishment of Column Unit for Electron Beam Machining System)

  • 강재훈;이찬홍;최종호
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2004년도 추계학술대회 논문집
    • /
    • pp.1017-1020
    • /
    • 2004
  • It is not efficient and scarcely out of the question to use commercial expensive electron beam lithography system widely used for semiconductor fabrication process for the manufacturing application field of various devices in the small business scope. Then scanning electron microscope based electron beam machining system is maybe regarded as a powerful model can be used for it simply. To get a complete suite of thus proper system, column unit build up with several electo-magnetic lens is necessarily required more than anything else to modify scanning electron microscope. In this study, various components included several electro-magnetic lens and main body which are essentially constructed for column unit are designed and manufactured. And this established column unit will be used for next connected study in the development step of scanning electron microscope based electron beam machining system.

  • PDF

Beam-Column 연결부(連結部)의 해석(解析) (Analysis of Beam-Column Connection)

  • 임상전;양홍종
    • 대한조선학회지
    • /
    • 제14권4호
    • /
    • pp.3-14
    • /
    • 1977
  • There are many Beam-Column connections in general structures and ship structures. For simplicity and convenience of analysis, the connections are mostly considered hinged when not reinforced or rigidly fixed when reinforced. This paper has intended to analyze the Beam-Column connection which is assumed two dimensional flat plate. The analysis has been preformed by Finite Element Method following the change of moment of inertia at connection. The conclusion of this investigation is as follows: By reinforcing or increasing the moment of inertia at connection part, the stress distribution of whole structure and the stress concentration at that part are relieved. Displacements of beam(when column is fixed) are almost linearly decreasing by the change of moment of inertia at connection.

  • PDF

고강도 철근 및 고강도 콘크리트를 사용한 보-기둥 접합의 비선형 거동 (Inelastic Behavior of High Strength Reinforced Concrete Beam-Column Joint)

  • 이정한;조중현;유영찬;이원호;정헌수
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1999년도 봄 학술발표회 논문집(I)
    • /
    • pp.547-552
    • /
    • 1999
  • The purpose of this study is to make a contribution to the construction of 40∼60 story R/C high rise building by developing the reinforcing details which can improve the seismic performance of high-strength (f'c=700㎏/㎠, fy=4000, 8000㎏/㎠) R/C beam-column joints. The reinforcing details which can make beam plastic hinging zones moved and spreaded from the column face is proposed to insure the ductile behavior of high-strength RC beam-column joints. The intermediate reinforcement which is vertically anchored by interlinking each intermediate reinforcements is proposed and tested to examine the mechanical performance of proposed details. Main variables are the shape of the intermediate reinforcements and yield strength of rebars. From the test results, the newly proposed intermediate reinforcement details can move and spread the beam plastic hinging zone about 1.0d from the column face.

  • PDF

Behavior of geopolymer and conventional concrete beam column joints under reverse cyclic loading

  • Raj, S. Deepa;Ganesan, N.;Abraham, Ruby;Raju, Anumol
    • Advances in concrete construction
    • /
    • 제4권3호
    • /
    • pp.161-172
    • /
    • 2016
  • An experimental investigation was carried out on the strength and behavior plain and fiber reinforced geopolymer concrete beam column joints and the results were compared with plain and steel fiber reinforced conventional concrete beam column joints. The volume fraction of fibers used was 0.5%. A total of six Geopolymer concrete joints and four conventional concrete joints were cast and tested under reversed cyclic loading to evaluate the performance of the joints. First crack load, ultimate load, energy absorption capacity, energy dissipation capacity stiffness degradation and moment-curvature relation were evaluated from the test results. The comparison of test results revealed that the strength and behavior of plain and fiber reinforced geopolymer concrete beam column joints are marginally better than corresponding conventional concrete beam column joints.

Pasternak지반 위에 놓인 Timoshenko보-기둥의 안정해석 (The Stability Analysis of Timoshenko Beam-Column on Pasternak Foundation)

  • 이용수;이병구;김선균
    • 한국강구조학회 논문집
    • /
    • 제13권1호
    • /
    • pp.91-100
    • /
    • 2001
  • 본 연구에서는 스팬의 중간지점에 신축 스프링과 회전 스프링을 가지며 Pasternak지반 위에 놓인 Timoshenko보-기둥에 대한 유한 요소법을 이용하여 안정해석을 한 것이다. 이 유한요소법에 의하여 얻어진 해는 신축스프링과 회전스프링, 전단지반이 없는 Timoshenko보-기둥의 경우에 대하여 기존해와 비교되었다. 동적안정해석에 의해 스팬 중간지점에 신축 및 회전 스프링을 가진 Pasternak지반 위해 놓인 Timoshenko보-기둥의 동적안정영역을 결정하였다.

  • PDF

Influence of shear deformation of exterior beam-column joints on the quasi-static behavior of RC framed structures

  • Costa, Ricardo J.T.;Gomes, Fernando C.T.;Providencia, Paulo M.M.P.;Dias, Alfredo M.P.G.
    • Computers and Concrete
    • /
    • 제12권4호
    • /
    • pp.393-411
    • /
    • 2013
  • In the analysis and design of reinforced concrete frames beam-column joints are sometimes assumed as rigid. This simplifying assumption can be unsafe because it is likely to affect the distributions of internal forces and moments, reduce drift and increase the overall load-carrying capacity of the frame. This study is concerned with the relevance of shear deformation of beam-column joints, in particular of exterior ones, on the quasi-static behavior of regular reinforced concrete sway frames. The included parametric studies of a simple sub-frame model reveal that the quasi-static monotonic behavior of unbraced regular reinforced concrete frames is prone to be significantly affected by the deformation of beam-column joints.