• Title/Summary/Keyword: Beam quality

Search Result 1,060, Processing Time 0.032 seconds

Finite element modeling of slab-on-beam concrete bridge superstructures

  • Patrick, Michael D.;Huo, X. Sharon
    • Computers and Concrete
    • /
    • v.1 no.3
    • /
    • pp.355-369
    • /
    • 2004
  • This paper presents a study of four finite element techniques that can be used to model slabon-beam highway bridges. The feasibility and correctness of each modeling technique are examined by applying them to a prestressed concrete I-beam bridge and a prestressed concrete box-beam bridge. Other issues related to bridge modeling such as torsional constant, support conditions, and quality control check are studied in detail and discussed in the paper. It is found that, under truck loading, the bending stress distribution in a beam section depends on the modeling technique being utilized. It is observed that the behavior of the bridge superstructure can be better represented when accounting for composite behavior between the supporting beams and slab.

A study on the Aluminium Beam Methods for Building a Stone Finished Envelope (석재 외피 시공을 위한 알루미늄 빔 지지공법 연구)

  • Kim, Jang-Ook;Lee, Young-Lae;Hong, Seong-Wook;Doh, Sun-Boong;Lee, Han-Seung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2012.05a
    • /
    • pp.235-242
    • /
    • 2012
  • In recently constructed building, It has become fashionable again that the heavy external skin system such as a Stone Finished Envelope. There are Squared Steel Pipe Methods, C-Shaped Steel Pipe Methods, and Aluminum Beam Methods in the structure of a heavy external skin system. The Aluminum Beam Methods is often misunderstood as a Plane Truss Structure, but this method is not appropriate to be called to a truss structure but a beam methods. The Aluminum Beam Methods is the most Eco-friendly methods in terms of Quality assurance, Efficiency, Safety, Construction period, Durability, and Recyclability. And this Methods is also very appropriate in considering the point of Energy conservation, Waste reduction, Long-life architecture, Replacement parts, Environmental protection, Public efficiency, and Building demolition.

  • PDF

Magnetic field imperfections of in-vacuum undulator on PLS-II beam dynamics

  • Chunjarean, Somjai;Hwan, Shin-Seung
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.359-359
    • /
    • 2011
  • Many research applications in basic sciences and biology such as protein crystallography require hard x-rays in the range of 3-20 keV with high brightness. A medium energy storage ring as PLS-II with a beam energy of 3 GeV can meet such high photon energies. In-vacuum undulators (IVU) with a period length of 20 mm and a peak field of 0.97 T are used in the PLS-II ring to produce such X-rays in the fundamental or higher harmonics. Due to the many poles and high fields, insertion devices like wigglers and undulators have a significant impact on the stability of the electron beam with potential degradation of beam quality and life time. Therefore, nonlinear fields must be determined by measurement and evaluated as to their impact on beam stability. Specifically, transverse field roll-off can be a serious detriment to injection in top-up mode and must be corrected. We use magnetic field measurement data to evaluated beam stability by tracking particles using an explicit symplectic integrator in both, transverse and longitudinal planes.

  • PDF

Effect of cross-section geometry on the stability performance of functionally graded cylindrical imperfect composite structures used in stadium construction

  • Ying Yang;Yike Mao
    • Geomechanics and Engineering
    • /
    • v.35 no.2
    • /
    • pp.181-194
    • /
    • 2023
  • The primary objective of this study is to examine the influence of geometry on the stability characteristics of cylindrical microstructures. This investigation entails a stability analysis of a bi-directional functionally graded (BD-FG) cylindrical imperfect concrete beam, focusing on the impact of geometry. Both the first-order shear deformation beam theory and the modified coupled stress theory are employed to explore the buckling and dynamic behaviors of the structure. The cylinder-shaped imperfect beam is constructed using a porosity-dependent functionally graded (FG) concrete material, wherein diverse porosity voids and material distributions are incorporated along the radial axis of the beam. The radius functions are considered in both uniform and nonuniform variations, reflecting their alterations along the length of the beam. The combination of these characteristics leads to the creation of BD-FG configurations. In order to enable the assessment of stability using energy principles, a numerical technique is utilized to formulate the equations for partial derivatives (PDEs).

Calculations of Single Electron Trajectory in Magnetically Insulated Cold Cathode Type Diode (냉음극(冷陰極) 자기(磁氣) 절연형(絶緣型) 다이오드에서의 전자(電子) 궤적(軌跡) 계산(計算))

  • Cho, C.H.;Chang, Y.M.;Ko, K.C.;Kang, H.B.
    • Proceedings of the KIEE Conference
    • /
    • 1992.07b
    • /
    • pp.942-944
    • /
    • 1992
  • The free electron laser (FEL) is driven by electron beams with energies ranging from hundreds of kilovolt to hundreds of megavolt. Therefore the efficiency of FEL strongly depends on the beam quality. In this paper we examined the relation between applied voltage and magnetic field at the magnetically insulated cylindrical cold cathode for the high quality electron beam by the numerical analysis. As a result, we knew that the beam widening strongly depended on applied magnetic field and voltage.

  • PDF

Manufacture of Precast Beam Element using High-Strength Self-Compacting Concrete (고강도 자기충전 콘크리트를 이용한 프리캐스트 보 부재 제작)

  • Lee, Hoi-Keun;Jung, Jae-Hong;Kim, Han-Joon;Lee, Seung-Hoon
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2009.05a
    • /
    • pp.249-250
    • /
    • 2009
  • Recently, the interest on self-compacting concrete (SCC) without any mechanical vibration is increasing as the demand for high-strength and high surface quality of precast element increased. In this work, precast beam element with 7m length was manufactured using high-strength SCC with design strength of 60MPa, resulting in high-strength and high surface quality was obtained from the precast beam cast by high-strength SCC.

  • PDF

A new replaceable fuse for moment resisting frames: Replaceable bolted reduced beam section connections

  • Ozkilic, Yasin O.
    • Steel and Composite Structures
    • /
    • v.35 no.3
    • /
    • pp.353-370
    • /
    • 2020
  • This paper describes a new type of replaceable fuse for moment resisting frames. Column-tree connections with beam splice connections are frequently preferred in the moment resisting frames since they eliminate field welding and provide good quality. In the column-tree connections, a part of the beam is welded to the column in the shop and the rest of the beam is bolted with the splice connection in the field. In this study, a replaceable reduced beam section (R-RBS) connection is proposed in order to eliminate welding process and facilitate assembly at the site. In the proposed R-RBS connection, one end is connected by a beam splice connection to the beam and the other end is connected by a bolted end-plate connection to the column. More importantly is that the proposed R-RBS connection allows the replacement of the damaged R-RBS easily right after an earthquake. Pursuant to this goal, experimental and numerical studies have been undertaken to investigate the performance of the R-RBS connection. An experimental study on the RBS connection was used to substantiate the numerical model using ABAQUS, a commercially available finite element software. Additionally, five different finite element models were developed to conduct a parametric study. The results of the analysis were compared in terms of the moment and energy absorption capacities, PEEQ, rupture and tri-axiality indexes. The design process as well as the optimum dimensions of the R-RBS connections are presented. It was also demonstrated that the proposed R-RBS connection satisfies AISC criteria based on the nonlinear finite element analysis results.

GaAs Epilayer Growth on Si(100) Substrates Cleaned by As/Ga Beam and Its RHEED Patterns (As과 Ga 빔 조사에 의해 세척된 Si(100) 기판 위에 GaAs 에피층 성장과 RHEED 패턴)

  • Yim, Kwang-Gug;Kim, Min-Su;Leem, Jae-Young
    • Journal of Surface Science and Engineering
    • /
    • v.43 no.4
    • /
    • pp.170-175
    • /
    • 2010
  • The GaAs epitaxial layers were grown on Si(100) substrates by molecular beam epitaxy(MBE) using the two-step method. The Si(100) substrates were cleaned with different surface cleaning method of vacuum heating, As-beam, and Ga-beam at the substrate temperature of $800^{\circ}C$. Growth temperature and thickness of the GaAs epitaxial layer were $800^{\circ}C$ and 1 ${\mu}m$, respectively. The surface structure and epitaxial growth were observed by reflection high-energy electron diffraction(RHEED) and scanning electron microscope(SEM). Just surface structure of the Si(100) substrate cleaned by Ga-beam at $800^{\circ}C$ shows double domain ($2{\times}1$). RHEED patterns of the GaAs epitaxial layers grown on Si(100) substrates with cleaning method of vacuum heating, As-beam, and Ga-beam show spot-like, ($2{\times}4$) with spot, and clear ($2{\times}4$). From SEM, it is found that the GaAs epitaxial layers grown on Si(100) substrates with Ga-beam cleaning has a high quality.