• Title/Summary/Keyword: Beam method

Search Result 6,573, Processing Time 0.027 seconds

Measurement of Ion-induced Secondary Electron Emission Yield of MgO Films by Pulsed Ion Beam Method

  • Lee, Sang-Kook;Kim, Jae-Hong;Lee, Ji-Hwa;Whang, Ki-Woong
    • Journal of Information Display
    • /
    • v.3 no.1
    • /
    • pp.17-21
    • /
    • 2002
  • Measurement of the ion-induced secondary electron emission coefficient (${\gamma}_i$) for insulating films is hampered by an unavoidable charging problem. Here, we demonstrate that a pulsed ion beam technique is a viable solution to the problem, allowing for accurate measurement of ${\gamma}_i$ for insulating materials. To test the feasibility of the pulsed ion beam method, the secondary electron emission coefficient from n-Si(100) is measured and compared with the result from the conventional continuous beam method. It is found that the ${\gamma}_i$ from n-Si(100) by the ion pulsed beam measured to be 0.34, which is the same as that obtained by continuous ion beam. However, for the 1000 A $SiO_2$ films thermally deposited on Si substrate, the measurement of ${\gamma}_i$ could be carred out by the pulsed ion method, even though the continuous beam method faced charging problem. Thus, the pulsed ion beam is regarded to be one of the most suitable methods for measuring secondary electron coefficient for the surface of insulator materials without experiencing charging problem. In this report, the dependence of ${\gamma}_i$ on the kinetic energy of $He^+$ is presented for 1000 ${\AA}$ $SiO_2$ films. And the secondary electron emission coefficient of 1000 ${\AA}$ MgO e-beam-evaporated on $SiO_2/Si$ is obtained using the pulsing method for $He^+$ and $Ar^+$ with energy ranging from 50 to 200 eV, and then compared with those from the conventional continuous method.

A Study on the Structural Methods between Purlin and Beam at Wooden Architecture in Joseon Dynasty (조선시대 목조건축 도리와 보의 결구방법에 관한 연구)

  • Jung, Yun-Sang
    • Journal of architectural history
    • /
    • v.16 no.6
    • /
    • pp.87-100
    • /
    • 2007
  • This study examines on the structural Methods between purlin and beam at Wooden Architecture in Joseon Dynasty($1372{\sim}1910$). Through the investigation, it is verified that the structural methods between purlin and beam is the technique utilizing tenon joint(통장부맞춤), Sungeoteok joint(숭어턱맞춤), dovetailed tenon joint(주먹장맞춤). And the methods of tenon joint is followed by the Sungeoteok joint, which is used in the buildings after middle Joseon dynasty. The method of tenon joint(통장부맞춤) is to connect the beam with the purlin by carving out the head of the beam as '一' shape. And the structural methods between Janghyeo(장혀, timber under purlin) and beam is halved joint(반턱맞춤) and tenon joint (통장부맞춤). The buildings in late Goryeo Dynasty and Joseon Dynasty adopted the method of tenon joint between purlin and beam. The method of Sungeoteok joint is to connect the beam with the purlins by carving out the head of the beams '凸' shape. And the structural methods between Janghyeo and beams is halved joint(반턱맞춤) and tenon joint(통장부맞춤), the method of tenon and step joint(통장부턱맞춤), dovetailed joint between beam and Janghyeo to increase the security of shear force.

  • PDF

Beam-rotating machinery system active vibration control using a fuzzy input estimation method and LQG control technique combination

  • Lee, Ming-Hui
    • Smart Structures and Systems
    • /
    • v.10 no.1
    • /
    • pp.15-31
    • /
    • 2012
  • This study proposes an active control method to suppress beam-rotating machinery system vibrations. The present control method is a combination of the fuzzy input estimation method (FIEM) and linear quadratic Gaussian problem (LQG) algorithms. The FIEM can estimate the unknown input and optimal states by measuring the dynamic displacement, the optimal estimated states into the feedback control; thereby obtaining the optimal control force for a random linear system. Active vibration control of a beam-rotating machinery system is performed to verify the feasibility and effectiveness of the proposed algorithm. The simulation results demonstrate that the proposed method can suppress vibrations in a beam-machine system more efficiently than the conventional LQG method.

Wave Models and Experimental Studies of Beam-plate-beam Coupled Systems for a Mid-frequency Analysis (중주파수 대역 해석을 위한 Beam-plate-beam 연성 구조물의 웨이브 모형 연구와 시험적 규명)

  • Yoo, Ji-Woo;Thompson, D.J.;Ferguson, N.S.
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.17 no.2 s.119
    • /
    • pp.121-129
    • /
    • 2007
  • There has been much effort to find suitable methods for structural analysis in the mid-frequency region where traditional low frequency methods have increasing uncertainties whilst statistical energy analysis is not strictly applicable. Systems consisting of relatively stiff beams coupled to flexible plates have a particularly broad mid-frequency region where the beams support only a few modes whilst the plate has a high modal density and modal overlap. A system of two parallel beams coupled to a plate is investigated based on the wave method, which is an approximate method. Muller's method is utilised for obtaining complex roots of a dispersion wave equation, which does not converge in the conventional wave method based on a simple iteration. The wave model is extended from a single-beam-plate system, to a plate with two identical beams which is modelled using a symmetric-antisymmetric technique. The important hypothesis that the coupled beam wavenumber is sufficiently smaller than the plate free wavenumber is experimentally verified. Finally, experimental results such as powers and energy ratios show the validity of the analytical wave models.

Mechanics based force-deformation curve of steel beam to column moment joints

  • Kasar, Arnav A.;Bharti, S.D.;Shrimali, M.K.;Goswami, Rupen
    • Steel and Composite Structures
    • /
    • v.25 no.1
    • /
    • pp.19-34
    • /
    • 2017
  • The widespread damage to steel Moment Resisting Frames (MRFs) in past major earthquakes have underscored the need to understand the nonlinear inelastic behaviour of such systems. To assess the seismic performance of steel MRF, it is essential to model the nonlinear force-deformation behaviour of beam to column joints. To determine the extent of inelasticity in a beam to column joint, nonlinear finite element analysis is generally carried out, which is computationally involved and demanding. In order to obviate the need of such elaborate analyses, a simplistic method to predict the force-deformation behaviour is required. In this study, a simple, mechanics driven, hand calculation method is proposed to obtain the forcedeformation behaviour of strong axis beam to column moment joints. The force-deformation behaviour for twenty-five interior and exterior beam to column joints, having column to beam strength ratios ranging from 1.2 to 10.99 and 2.4 to 22, respectively, have been obtained. The force-deformation behaviour predicted using the proposed method is compared with the results of finite element analyses. The results show that the proposed method predicts the force-deformation behaviour fairly accurately, with much lesser computational effort. Further the proposed method has been used to conduct Nonlinear Dynamic Time History Analyses of two benchmark frames; close correspondence of results obtained with published results establishes the usefulness and computational accuracy of the method.

Beam cone analysis and its applications for the beams obliquely input to dielectric boundaries (유전체 경계면에 경사지게 입사하는 beam cone의 해석과 그 응용)

  • 이병호;민성욱
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.33A no.5
    • /
    • pp.142-148
    • /
    • 1996
  • It is shown that a simple vector analysis method can provide beam cone shapes for laser bemas non-paraxially input to dielectric boundaries with inclination. Acceptance coen shapes for angled-endface fibers are calculated by the method. Beam cone shapes inside InP substrates are also calculated by the method for the coupling of an optical fiber and an InP-based photodiode using a Si v-groove. The effectiveness and errors of the recently suggested matrix method for inclined boundaries are also studied.

  • PDF

A Beam Design Method for Planar Array with Unequal Transducer Sensitivities (불균일 트랜스듀서 감도를 갖는 평면 배열의 빔 설계 기법)

  • 조치영;권오조
    • Journal of KSNVE
    • /
    • v.8 no.4
    • /
    • pp.663-669
    • /
    • 1998
  • In this paper, a beam design method is presented for the planar array with unequal transducer sensitivities. Basically the proposed method consists of two steps. At first, the optimum weightings are designed with the assumption that all array elements have an uniform sensitivity. Next, the compesnated weightings for the unequal transducer sensitivities can reversely be determined from an inverse problem utilizing the design beam pattern evaluated by the predetermined optimal weightings. A numerical example is inculded to illustrate the proposed method.

  • PDF

Free vibration analysis of tapered beam-column with pinned ends embedded in Winkler-Pasternak elastic foundation

  • Civalek, Omer;Ozturk, Baki
    • Geomechanics and Engineering
    • /
    • v.2 no.1
    • /
    • pp.45-56
    • /
    • 2010
  • The current study presents a mathematical model and numerical method for free vibration of tapered piles embedded in two-parameter elastic foundations. The method of Discrete Singular Convolution (DSC) is used for numerical simulation. Bernoulli-Euler beam theory is considered. Various numerical applications demonstrate the validity and applicability of the proposed method for free vibration analysis. The results prove that the proposed method is quite easy to implement, accurate and highly efficient for free vibration analysis of tapered beam-columns embedded in Winkler- Pasternak elastic foundations.

Dynamic analysis of a laminated composite beam under harmonic load

  • Akbas, S.D.
    • Coupled systems mechanics
    • /
    • v.9 no.6
    • /
    • pp.563-573
    • /
    • 2020
  • Dynamic responses of a laminated composite cantilever beam under a harmonic are investigated in this study. The governing equations of problem are derived by using the Lagrange procedure. The Timoshenko beam theory is considered and the Ritz method is implemented in the solution of the problem. The algebraic polynomials are used with the trivial functions for the Ritz method. In the solution of dynamic problem, the Newmark average acceleration method is used in the time history. In the numerical examples, the effects of load parameter, the fiber orientation angles and stacking sequence of laminas on the dynamic responses of the laminated beam are investigated.

Vibration behavior of bi-dimensional functionally graded beams

  • Selmi, Abdellatif
    • Structural Engineering and Mechanics
    • /
    • v.77 no.5
    • /
    • pp.587-599
    • /
    • 2021
  • Based on Euler-Bernoulli beam theory and continuous element method, the free vibration of bi-dimensional functionally graded beams is investigated. It is assumed that the material properties vary exponentially along the beam thickness and length. The characteristic frequency equations of beams with different boundary conditions are obtained by transfer matrix method. The validity of the proposed method is assessed through comparison with available results. Parametric studies are carried out to analyze the influences of the gradient indexes and the beam slenderness ratio on the natural frequencies of bi-dimensional functionally graded beams.