Browse > Article
http://dx.doi.org/10.12989/sem.2021.77.5.587

Vibration behavior of bi-dimensional functionally graded beams  

Selmi, Abdellatif (Department of Civil Engineering, College of Engineering in Al-Kharj, Prince Sattam Bin Abdulaziz University)
Publication Information
Structural Engineering and Mechanics / v.77, no.5, 2021 , pp. 587-599 More about this Journal
Abstract
Based on Euler-Bernoulli beam theory and continuous element method, the free vibration of bi-dimensional functionally graded beams is investigated. It is assumed that the material properties vary exponentially along the beam thickness and length. The characteristic frequency equations of beams with different boundary conditions are obtained by transfer matrix method. The validity of the proposed method is assessed through comparison with available results. Parametric studies are carried out to analyze the influences of the gradient indexes and the beam slenderness ratio on the natural frequencies of bi-dimensional functionally graded beams.
Keywords
bi-dimensional; continuous elements method; free vibration; functionally graded beam;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Hussain, M. and Selmi, A. (2020a), "Analytical vibration of FG cylindrical shell with ring support based on various configurations", Adv. Concrete Constr., 9(6), 557-568. http://dx.doi.org/10.12989/acc.2020.9.6.557.   DOI
2 Hussain, M. and Selmi, A. (2020b), "Effect of Pasternak foundation: Structural modal identification for vibration of FG shell", Adv. Concrete Constr., 9(6), 569-576. http://dx.doi.org/10.12989/acc.2020.9.6.569.   DOI
3 Karamanli, A. (2018), "Free vibration analysis of two directional functionally graded beams using a third order shear deformation theory", Compos. Struct., 189, 127-136. https://doi.org/10.1016/j.compstruct.2018.01.060.   DOI
4 Kukla, S. and Rychlewska, J. (2013), "Free vibration analysis of functionally graded beams", J. Appl. Math. Comput. Mech., 12(2), 39-44. https://doi.org/10.17512/jamcm.2013.2.05.   DOI
5 Kulla, P.H. (1991), "The continuous elements method", ESA International Conference on Spacecraft Structures and Mechanical Testing, ESTEC, Noodwijk, Netherlands.
6 Li, S., Wan, Z. and Zhang, J. (2014), "Free vibration of functionally graded beams based on both classical and firstorder shear deformation beam theories", Appl. Math. Mech. English Ed., 35, 591-606. https://doi.org/10.1007/s10483-014-1815-6.   DOI
7 Li, X.F., Kang, Y.A. and Wu, J.X. (2013), "Exact frequency equations of free vibration of exponentially functionally graded beams", Appl. Acoust., 74(3), 413-420. https://doi.org/10.1016/j.apacoust.2012.08.003.   DOI
8 Mahi, A., Bedia, EAA., Tounsi, A. and Mechab, I. (2010), "An analytical method for temperature dependent free vibration analysis of functionally graded beams with general boundary conditions", Compos. Struct., 92(8), 1877-1887. https://doi.org/10.1016/j.compstruct.2010.01.010.   DOI
9 AlSaid-Alwan, H.H.S. and Avcar, M. (2020), "Analytical solution of free vibration of FG beam utilizing different types of beam theories: A comparative study", Comput. Concrete, 26(3), 285-292. https://doi.org/10.12989/CAC.2020.26.3.285.   DOI
10 Achouri, F., Benyoucef, S., Bourada, F., Bouiadjra, R.B. and Tounsi, A. (2019), "Robust quasi 3D computational model for mechanical response of FG thick sandwich plate", Struct. Eng. Mech., 70(5), 571-589. https://doi.org/10.12989/SEM.2019.70.5.571.   DOI
11 Addou, F.Y., Meradjah, M., Bousahla, A.A., Benachour, A., Bourada, F., Tounsi, A. and Mahmoud, S.R. (2019), "Influences of porosity on dynamic response of FG plates resting on Winkler/Pasternak/Kerr foundation using quasi 3D HSDT", Comput. Concrete, 24(4), 347-367. https://doi.org/10.12989/CAC.2019.24.4.347.   DOI
12 Nguyen, D.K., Nguyen, Q.H., Tran, T.T. and Bui, V.T. (2017), "Vibration of bi-dimensional functionally graded Timoshenko beams excited by a moving load", Acta. Mech., 228, 141-155. https://doi.org/10.1007/s00707-016-1705-3.   DOI
13 Mahmoudi, A., Benyoucef, S., Tounsi, A., Benachour, A., Bedia, A.A. and Mahmoud, S.R. (2019), "A refined quasi-3D shear deformation theory for thermo-mechanical behavior of functionally graded sandwich plates on elastic foundations", J. Sandw. Struct. Mater., 21(6), 1906-1929. https://doi.org/10.1177/1099636217727577.   DOI
14 Mekerbi, M., Benyoucef, S., Mahmoudi, A., Bourada, F. and Tounsi, A. (2019), "Investigation on thermal buckling of porous FG plate resting on elastic foundation via quasi 3D solution", Struct. Eng. Mech., 72(4), 513-524. https://doi.org/10.12989/SEM.2019.72.4.513.   DOI
15 Nemat-Alla, M. and Noda, N. (2000), "Edge crack problem in a semi-infinite FGM plate with a bi-directional coefficient of thermal expansion under two-dimensional thermal loading", Acta. Mech., 144, 211-229. https://doi.org/10.1007/BF01170176.   DOI
16 Okamura, H., Shinno, A., Yamanaka, T., Suzuki, A. and Sogabe, K. (1995), "Simple modeling and analysis for crankshaft three-dimensional vibrations, part1: background and application to free vibrations", Trans. ASME, J. Vibr. Acoust., 117(1), 70-79.   DOI
17 Okamura, H., Shinno, A., Yamanaka, T., Suzuki, A. and Sogabe, K.A. (1990), "Dynamic stiffness matrix approach to the analysis of three-dimensional vibrations of automobile engine crankshafts: Part1-background and application to free vibrations", Proceedings of the ASME Winter Meeting on Vehicle Noise, Dallas, Texas, USA.
18 Anandrao, K.S., Gupta, R., Ramachandran, P. and Rao, G.V. (2012), "Free vibration analysis of functionally graded beams", Defence, Sci. J., 62(3), 139-146. https://doi.org/10.14429/dsj.62.1326.   DOI
19 Alshorbagy, AE., Eltaher, M.A. and Mahmoud, F.F. (2011), "Free vibration characteristics of a functionally graded beam by finite element method", Appl. Math. Model., 35(1), 412-425. https://doi.org/10.1016/j.apm.2010.07.006.   DOI
20 Pandey, S. and Pradyumna, S. (2015), "Free vibration of functionally graded sandwich plates in thermal environment using a layer wise theory", Eur. J. Mech. A Solid., 51, 55-66. https://doi.org/10.1016/j.euromechsol.2014.12.001.   DOI
21 Asgari, M. and Akhlaghi, M. (2011), "Natural frequency analysis of 2D-FGM thick hollow cylinder based on three-dimensional elasticity equations", Eur. J. Mech. A Solid., 30, 72-81. https://doi.org/10.1016/j.euromechsol.2010.10.002.   DOI
22 Atmane, HA., Tounsi, A., Meftah, SA. and Belhadj, HA. (2011), "Free vibration behavior of exponential functionally graded beams with varying cross-section", J. Vib. Control, 17(2), 311-318. https://doi.org/10.1177/1077546310370691.   DOI
23 Aydin, K. (2013), "Free vibration of functionally graded beams with arbitrary number of surface cracks", Eur. J. Mech. A-Solid., 42, 112-124. https://doi.org/10.1016/j.euromechsol.2013.05.002.   DOI
24 Balubaid, M., Tounsi, A., Dakhel, B. and Mahmoud, S.R. (2019), "Free vibration investigation of FG nanoscale plate using nonlocal two variables integral refined plate theory", Comput. Concrete, 24(6), 579-586. https://doi.org/10.12989/CAC.2019.24.6.579.   DOI
25 Shahba, A. and Rajasekaran, S. (2012), "Free vibration and stability of tapered Euler-Bernoulli beams made of axially functionally graded materials", Appl. Math. Model., 36(7), 3094-3111. https://doi.org/10.1016/j.apm.2011.09.073.   DOI
26 Benahmed, A., Fahsi, B., Benzair, A., Zidour, M., Bourada, F. and Tounsi, A. (2019), "Critical buckling of functionally graded nanoscale beam with porosities using nonlocal higher-order shear deformation", Struct. Eng. Mech., 69(4), 457-466. https://doi.org/10.12989/SEM.2019.69.4.457.   DOI
27 Boukhlif, Z., Bouremana, M., Bourada, F., Bousahla, A.A., Bourada, M., Tounsi, A. and Al-Osta, M.A. (2019), "A simple quasi-3D HSDT for the dynamics analysis of FG thick plate on elastic foundation", Steel Compos. Struct., 31(5), 503-516. https://doi.org/10.12989/SCS.2019.31.5.503.   DOI
28 Casimir, J.B. (1997), "Elements continus de type poutre (Etude statique et dynamique d'assemblages de poutres planesou gauches) ", Thesis in French, CNAM.
29 Qibo, M. (2011), "Free vibration analysis of multiple-stepped beams by using Adomian decomposition method", Math Comput. Model., 54(1-2), 756-764. https://doi.org/10.1016/j.mcm.2011.03.019.   DOI
30 Rahmani, M.C., Kaci, A., Bousahla, A.A., Bourada, F., Tounsi, A., Bedia, E.A.A., Mahmoud, S.R. Benrahou, K.H. and Tounsi, A. (2020), "Influence of boundary conditions on the bending and free vibration behavior of FGM sandwich plates using a fourunknown refined integral plate theory", Comput. Concrete, 25(3), 225-244. https://doi.org/10.12989/CAC.2020. 25.3.225.   DOI
31 Sharma, P., Singh, R. and Hussain, M. (2019), "On modal analysis of axially functionally gradedmaterial beam under hygrothermal effect", Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci., 234(5), 1085-1101. https://doi.org/10.1177/0954406219888234.   DOI
32 Goupee A.J. and Vel, S.S. (2006), "Optimization of natural frequencies of bidirectional functionally graded beams", Struct. Multidisc. Optim., 32, 473-484. https://doi.org/10.1007/s00158-006-0022-1.   DOI
33 Simsek, M. (2015), "Bi-directional functionally graded materials (BDFGMs) for free and forced vibration of Timoshenko beams with various boundary conditions", Compos. Struct., 141, 968-978. https://doi.org/10.1016/j.compstruct.2015.08.021.   DOI
34 Simsek, M., Kocatürk, T. and Akbas, S. (2012), "Dynamic behavior of an axially functionally graded beam under action of a moving harmonic load", Compos. Struct., 94, 2358-2364. https://doi.org/10.1016/j.compstruct.2012.03.020.   DOI
35 Sina, S., Navazi, H. and Haddadpour, H. (2009), "An analytical method for free vibration analysis of functionally graded beams", Mater. Des., 30(3), 741-747. https://doi.org/10.1016/j.matdes.2008.05.015.   DOI
36 Casimir, J.B., Duforet, C. and Vinh, T. (2003), "Dynamic behavior of structures in large frequency range by continuous element methods", J. Sound Vib., 267, 1085-1106. https://doi.org/10.1016/S0022-460X(02)01533-X.   DOI
37 Chaabane, L.A., Bourada, F., Sekkal, M., Zerouati, S., Zaoui, F.Z., Tounsi, A., Derras, A., Bousahla, A.A. and Tounsi, A. (2019), "Analytical study of bending and free vibration responses of functionally graded beams resting on elastic foundation", Struct. Eng. Mech., 71(2), 185-196. https://doi.org/10.12989/SEM.2019.71.2.185.   DOI
38 Eroglu, U. (2015), "In-plane free vibrations of circular beams made of functionally graded material in thermal environment: Beam theory approach", Compos. Struct., 122, 217-228. https://doi.org/10.1016/j.compstruct.2014.11.051.   DOI
39 Giunta, G., Crisafulli, D., Belouettar, S. and Carrera, E. (2011), "Hierarchical theories for the free vibration analysis of functionally graded beams", Compos. Struct., 94(1), 68-74. https://doi.org/10.1016/j.compstruct.2011.07.016.   DOI
40 Haciyev, V.C., Sofiyev, A.H. and Kuruoglu, V.T. (2018), "Free bending vibration analysis of thin bi-directionally exponentially graded orthotropic rectangular plates resting on two-parameter elastic foundations", Compos. Struct., 184, 372-377. https://doi.org/10.1016/j.compstruct.2017.10.014.   DOI
41 Harris, C.M. and Crede, C.E. (1976), Shock and Vibration Handbook, McGraw-Hill, New York.
42 Huang, Y. and Li, X.F. (2010), "A new approach for free vibration of axially functionally graded beams with non-uniform crosssection", J. Sound Vib., 329(11), 2291-2303. https://doi.org/10.1016/j.jsv.2009.12.029.   DOI
43 Wei, D., Liu, Y. and Xiang, Z. (2012), "An analytical method for free vibration analysis of functionally graded beams with edge cracks", J. Sound Vib., 331(7), 1686-1700. https://doi.org/10.1016/j.jsv.2011.11.020.   DOI
44 Tlidji, Y., Zidour, M., Draiche, K., Safa, A., Bourada, M., Tounsi, A., Bousahla, A.A. and Mahmoud, S.R. (2019), "Vibration analysis of different material distributions of functionally graded microbeam", Struct. Eng. Mech., 69(6), 637-649. https://doi.org/10.12989/SEM.2019.69.6.637.   DOI
45 Tong, X., Tabarrok, B. and Yeh, K. (1995), "Vibration analysis of Timoshenko beams with nonhomogeneity and varying cross-section", J. Sound Vib., 5(186), 821-835. https://doi.org/10.1006/jsvi.1995.0490.   DOI
46 Wang, Z., Wang, X., Xu, G., Cheng, S. and Zeng, T. (2016), "Free vibration of two-directional functionally graded beams", Compos. Struct., 135, 191-198. https://doi.org/10.1016/j.compstruct.2015.09.013.   DOI
47 Yang, Y., Lam, C.C., Kou, K.P. and Iu, V.P. (2014), "Free vibration analysis of the functionally graded sandwich beams by a mesh free boundary-domain integral equation method", Compos. Struct., 117, 32-39. https://doi.org/10.1016/j.compstruct.2014.06.016.   DOI
48 Zhao, L., Chen, W.Q. and Lü, C.F. (2012), "Symplectic elasticity for two-directional functionally graded materials", Mech. Mater., 54, 32-42. https://doi.org/10.1016/j.mechmat. 2012.06.001.   DOI
49 Zarga, D., Tounsi, A., Bousahla, A.A., Bourada, F. and Mahmoud, S.R. (2019), "Thermomechanical bending study for functionally graded sandwich plates using a simple quasi-3D shear deformation theory", Struct. Eng. Mech., 32(3), 389-410. https://doi.org/10.12989/SCS.2019.32.3.389.   DOI