• Title/Summary/Keyword: Beam flexure

Search Result 153, Processing Time 0.023 seconds

A Slim PZT Actuator for Small form Factor Optical Disk Drives (초소형 광디스크 드라이브용 압전형 액츄에이터 제작)

  • Woosung Yang;Lee, Seung-Yop;Park, Young-Phil
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.762-769
    • /
    • 2003
  • 본 연구에서는 적층형 압전소자를 이용하여 초소형 및 슬림형 광디스크 드라이브용 광픽업 구동기를 개발하였다. 최근에 휴대용 정보기기의 급격한 발달로 인해 다양한 형태의 초소형 정보저장기기가 사용되고 있으며 착탈식 형태의 초소형 광디스크를 사용하는 ODD가 개발 중에 있다. 적층 형태의 압전소자와 유연 힌지 형태의 변위 확대기구를 사용하여 구동기의 출력 힘과 허용 변위를 증가시키도록 설계하였다. 압전형 구동기의 동특성을 고려한 모델링과 이론적 해석을 통해 목표 변위와 성능을 만족하도록 설계 변수를 최적화하였고 이를 ANSYS를 이용한 해석과 비교하였다. 상용화된 적층형 압전소자를 이용한 prototype 올 제작하여 실험을 수행하였으며 이론적인 예상 값과 잘 일치함을 보였다. 이와 같은 이론적 해석과 실험 결과를 토대로 높이가 2.5mm이며 15V 에서 $\pm$400$\mu\textrm{m}$의 변위를 갖는 슬림형 및 초소형 ODD에 적합한 압전형 구동기를 설계하였다.

  • PDF

Optimum design of prestressed concrete beams by a modified grid search method

  • Cagatay, Ismail H.;Dundar, Cengiz;Aksogan, Orhan
    • Structural Engineering and Mechanics
    • /
    • v.15 no.1
    • /
    • pp.39-52
    • /
    • 2003
  • A computer program has been developed for the optimum design of prestressed concrete beams under flexure. Optimum values of prestressing force, tendon configuration, and cross-sectional dimensions are determined subject to constraints on the design variables and stresses. 28 constraints have been used including flexural stresses, cover requirement, the aspect ratios for top and bottom flanges and web part of a beam and ultimate moment. The objective function contains cost of concrete, prestressing force and formwork. Using this function, it is possible to obtain minimum cost design, minimum weight or cross-sectional area of concrete design and minimum prestressing force design. Besides the idealized I-shaped cross-section, which is widely used in literature, a general I-shaped cross-section with eight geometrical design variables are used here. Four examples, one of which is available in the literature and the others are modified form of it, have been solved for minimum cost and minimum cross-sectional area designs and the results are compared. The computer program, which employs modified grid search optimization method, can assist a designer in producing efficient designs rapidly and easily. Considerable savings in computational work are thus made possible.

Flexural Design and Ductile Capacity of Reinforced High Strength Concrete Beams (고강도 철근 콘크리트 보의 휨 설계 및 연성능력)

  • 신성우;유석형;안종문;이광수
    • Magazine of the Korea Concrete Institute
    • /
    • v.8 no.6
    • /
    • pp.141-149
    • /
    • 1996
  • The reinforced high-strength-concrete beam subjected to flexure moment behaves more brittly than the moderate-strength-concrete beam reinforced with equal reinforcement ratio($\rho$/$\rho_b$). Test results show that when the concrete strength exceeds 830kg/$cm^2$, the maximum reinforcement ratio should be less than $0.6{\rho}_b$ for ductile behavior (${\rho}_b$=balanced steel ratio). The ratio of flexural strength between experimental results and analytical results with rectangular stress block decrease as the compressive strength of concrete increase. The shape of the compressive stress block distributed triangularly. because the ascending part of the stress-strain curve shows fairly linear response up to maximum stress in contrast to the nonlinear behavior of the medium and low strength specimens.

Comprehensive experimental investigation on mechanical behavior for types of reinforced concrete Haunched beam

  • Albegmprli, Hasan M.;Gulsan, M. Eren;Cevik, Abdulkadir
    • Advances in concrete construction
    • /
    • v.7 no.1
    • /
    • pp.39-50
    • /
    • 2019
  • This study presents a comprehensive experimental investigation on mostly encountered types of Reinforced Concrete Haunched Beams (RCHBs) where three modes of RCHBs investigated; the diversity of studied beams makes it a pioneer in this topic. The experimental study consists of twenty RCHBs and four prismatic beams. Effects of important parameters including beam type, the inclination angle, flexure and compressive reinforcement, shear reinforcement on mechanical behavior and failure mode of each mode of RCHBs were examined in detail. Furthermore crack propagation at certain load levels were inspected and visualized for each RCHB mode. The results confirm that RCHBs have different behavior in shear as compared to the prismatic beams. At the same time, different mechanical behavior was observed between the modes of RCHBs. Therefore, RCHBs were classified into three modes according to the inclination shape and mode of failure (Modes A, B and C). However, it was observed that there is no significant difference between RCHBs and prismatic beams regarding flexural behavior. Moreover, a new and unified formula was proposed to predict the critical effective depth of all modes of RCHBs that is very useful to predict the critical section for failure.

Free vibration and static analyses of metal-ceramic FG beams via high-order variational MFEM

  • Madenci, Emrah
    • Steel and Composite Structures
    • /
    • v.39 no.5
    • /
    • pp.493-509
    • /
    • 2021
  • There is not enough mixed finite element method (MFEM) model developed for static and dynamic analysis of functionally graded material (FGM) beams in the literature. The main purpose of this study is to develop a reliable and efficient computational modeling using an efficient functional in MFEM for free vibration and static analysis of FGM composite beams subject to high order shear deformation effects. The modeling of material properties was performed using mixture rule and Mori-Tanaka scheme which are more realistic determination techniques. This method based on the assumption that a two phase composite material consisting of matrix reinforced by spherical particles, randomly distributed in the beam. To explain the displacement components of the shear deformation effects, it was accepted that the shear deformation effects change sinusoidal. Partial differential field equations were obtained with the help of variational methods and then these equations were transformed into a novel functional for FGM beams with the help of Gateaux differential derivative operator. Thanks to the Gateaux differential method, the compatibility of the field equations was checked, and the field equations and boundary conditions were reflected to the function. A MFEM model was developed with a total of 10 degrees of freedom to apply the obtained functional. In the numerical applications section, free vibration and flexure problems solutions of FGM composite beams were compared with those predicted by other theories to show the effects of shear deformation, thickness changing and boundary conditions.

Structural performance of fiber reinforced cementitious plinths in precast girder bridges

  • Gergess, Antoine N;Challita, Julie
    • Structural Engineering and Mechanics
    • /
    • v.82 no.3
    • /
    • pp.313-323
    • /
    • 2022
  • Steel laminated elastomeric bearings are commonly used in bridge structures to control displacements and rotations and transfer forces from the superstructure to the substructure. Proper knowledge of design, fabrication and erection procedures is important to ensure stability and adequate structural performance during the lifetime of the bridge. Difference in elevations sometimes leads to large size gaps between the bearing and the girder which makes the grout thickness that is commonly used for leveling deviate beyond standards. This paper investigates the structural response of High Strength Fiber Reinforced Cementitious (HSFRC) thin plinths that are used to close gaps between bearing pads and precast girders. An experimental program was developed for this purpose where HSFRC plinths of different size were cast and tested under vertical loads that simulate bridge loading in service. The structural performance of the plinths was closely monitored during testing, mainly crack propagation, vertical reaction and displacement. Analytically, the HSFRC plinth was analyzed using the beam on elastic foundation theory as the supporting elastomeric bearing pads are highly compressible. Closed form solutions were derived for induced displacement and forces and comparisons were made between analytical and experimental results. Finally, recommendations were made to facilitate the practical use of HSFRC plinths in bridge construction based on its enhanced load carrying capacity in shear and flexure.

Design of Economical Steel Ratio in RC Flexural Members (RC 휨부재의 경제적 철근비 설계)

  • Jeong, Je Pyong;Lee, Chang Kee;Ryu, Heui Joong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.35 no.1
    • /
    • pp.93-99
    • /
    • 2015
  • This paper is on a practical method for determination of the economical steel ratio in RC flexural members with an equal safety factor. The cost functions of each material and labor are considered to construct the cost function. Then, an equation for determination of the economical flexure steel ratio with the lowest construction cost were proposed. It was found that a relevant steel ratio is recommended to be 0.65~1.0% for designing singly reinforced rectangular beam.

A Study of Torsional and Distortional Analysis of Thin-walled Multicell Box Girder Using Shell Elements (쉘요소를 이용한 박판다실박스거더에서의 비틀림과 뒤틀림 해석기법 연구)

  • Kim, Seung-Jun;Park, Jong-Sub;Kim, Sung-Nam;Kang, Young-Jong
    • 한국방재학회:학술대회논문집
    • /
    • 2007.02a
    • /
    • pp.71-74
    • /
    • 2007
  • Thin-walled multicell box girders subjected to an eccentric load can be produced the three global behaviors of flexure, torsion, and distortion. But it is very difficult to evaluate each influences of major behaviors numerically. If we can decompose an eccentric load P into flexural, torsional, and distortional forces, we can execute quantitative analysis each influences of major behaviors. Decomposition of Applied Load for Thin-walled Rectangular multi-cell box girders is researched by Park, Nam-Hoi(Development of a multicell Box Beam Element Including Distortional Degrees of Freedom, 2003). But researches about thin-walled trapezoidal multi-cell section is insufficient. So, this paper deals with decomposition process and independent analysis method of multi-cell box girders include trapezoidal section.

  • PDF

A Study on the Effect of Molding Pressure on the Interlaminar Fracture Toughness (층간파괴인성치에 미치는 성형압력의 영향에 관한 연구)

  • 김형진;김재동;고성위
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.25 no.5
    • /
    • pp.1140-1147
    • /
    • 2001
  • This paper describes the effect of various molding pressure for Mode I. Mode II interlaminar fracture toughness of carbon fiber reinforced plastic composites by using double cantilever beam(DCB), end notched flexure(ENF) and end loaded split(ELS) Specimen. The value of $G_{IC}$, $G_{IIC}$ as a function of various molding pressure is almost same at 307, 431, 585 kPa, however it shows highest value under 307kPa molding pressure, The SEM photographs show good fiber distribution and interfacial bonding of composites when the molding pressure is the 307kPa.

  • PDF

Stability Analysis of Thin-Walled Space Frame by F.E.M. (유한요소법(有限要素法)에 의한 박벽(薄壁) 공간(空間)뼈대구조(構造)의 좌굴(坐屈) 해석(解析))

  • Kim, Moon Young;Shin, Hyun Mock
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.13 no.1
    • /
    • pp.1-12
    • /
    • 1993
  • Tangent stiffness matrices are derived for the torsional and lateral stability analysis of the space beams and framed structures with the symmetric thin-walled section by using the principle of virtual displacement. In the cases of restrained torsion and unrestrained torsion, the elastic and geometric stiffness matrices are evaluated by using the Hermitian polynomials which represent the displacement field of the beam element in simple flexure. Numerical examples illustrate the accuracy and convergence characteristics of the derived formulations.

  • PDF