• Title/Summary/Keyword: Beam current

Search Result 1,312, Processing Time 0.023 seconds

Effects of Current Intensity on the Reaction Efficiency and Kinetics of Gas Compound Decomposition by Electron Beam in a Continuous Flow System (연속식 흐름 가스상물질의 전자선 분해반응에서 전류 세기가 반응효율 및 kinetics에 미치는 영향)

  • Tak-Hyun Kim;Dong-Woo Kim;Sang-Hee Jo;Jieun Son;Seungho Yu;Tae-Hun Kim;Jong-Seok Park
    • Journal of Radiation Industry
    • /
    • v.18 no.3
    • /
    • pp.235-240
    • /
    • 2024
  • Electron beam technology has recently attracted attention as one of the powerful air pollution control methods. In this study, methyl mercaptan decomposition by electron beam in a continuous gas flow system was studied. To this, the effect of gas flowrate, which is one of important operating variables in the continuous gas flow electron beam process, on methyl mercaptan treatment efficiency was studied. In particular, the treatment efficiency and the reaction kinetics of methyl mercaptan decomposition were compared when calculated based on the absorbed dose and when calculated based on the current intensity of electron beam. When based on the electron beam absorbed dose, the treatment efficiency and 1st-order reaction constant increased as the gas flowrate was increased, contrary to the trends in general chemical reactions. However, when based on the current intensity, the treatment efficiency and 1st-order reaction constant increased as the gas flowrate was decreased, which can be theoretically explained. This is due to the fact that the current intensity increased as the gas flowrate was increased, resulting in improved the electron beam treatment efficiency. In conclusion, it is necessary to consider not only the absorbed dose but also the current intensity of electron beam in order to explain the results of reaction efficiencies and kinetics in the continuous flow electron beam gas treatment process.

Discharge Characteristics of a KSTAR NBI Ion Source

  • Chang Doo-Hee;Oh Byung-Hoon
    • Nuclear Engineering and Technology
    • /
    • v.35 no.3
    • /
    • pp.226-233
    • /
    • 2003
  • The discharge characteristics of a prototype ion source was investigated, which was developed and upgraded for the NBI (Neutral Beam Injection) heating system of KSTAR (Korea Superconducting Tokamak Advanced Research). The ion source was designed for the arc discharge of magnetic bucket chamber with multi-pole cusp fields. The ion source was discharged by the emission-limited mode with the control of filament heating voltage. The maximum ion density was 4 times larger than the previous discharge controlled by a space-charge-limited mode with fully heated filament. The plasma (ion) density and arc current were proportional to the filament voltage, but the discharge efficiency was inversely proportional to the operating pressure of hydrogen gas. The maximum ion density and arc current were obtained with constant arc voltage ($80{\sim}100V$), as $8{\times}10^{11}cm^{-3}$ and 1200 A, respectively. The estimated maximum beam current was about 35 A, extracted by the accelerating voltage of 80kV.

A Study on $He^+$ Ion Beam Extraction in the Duoplasmatron Ion Source (Duoplasmatron 이온원에서의 $He^+$ 이온빔 인출에 관한 연구)

  • Myong-Seop KIM;Hae-iLL BAK
    • Nuclear Engineering and Technology
    • /
    • v.23 no.4
    • /
    • pp.438-443
    • /
    • 1991
  • The operational characteristics of the duoplasmatron ion source are investigated in order to obtain the maximum achievable extraction current of the $He^+$ ion beam with the small divergence. Under the variations of the gas pressure, the arc current, the magnet current and the extraction voltage of the ion source, the change of the extracted $He^+$ ion beam current is observed. An oxide filament, the mixture of BaO and SrO coated on Ni meshes, is used as the hot cathode, and its average lifetime is about 100 hours. The extraction current is linearly proportional to the arc current. As the magnet current of the ion source is increased, the extraction current increases, but the beam divergence becomes larger. The maximum extraction current is obtained at the source pressure of 0.084 Torr. The extraction current is proportional to the extraction voltage raised to the power of 3/2 as estimated from theory. At the extraction voltage of 5.72 kV, the maximum extraction current of 50 $\mu$A is obtained under the optimized extraction condition.

  • PDF

Design Study for Pulsed Proton Beam Generation

  • Kim, Han-Sung;Kwon, Hyeok-Jung;Seol, Kyung-Tae;Cho, Yong-Sub
    • Nuclear Engineering and Technology
    • /
    • v.48 no.1
    • /
    • pp.189-199
    • /
    • 2016
  • Fast neutrons with a broad energy spectrum, with which it is possible to evaluate nuclear data for various research fields such as medical applications and the development of fusion reactors, can be generated by irradiating proton beams on target materials such as beryllium. To generate short-pulse proton beam, we adopted a deflector and slit system. In a simple deflector with slit system, most of the proton beam is blocked by the slit, especially when the beam pulse width is short. Therefore, the available beam current is very low, which results in low neutron flux. In this study, we proposed beam modulation using a buncher cavity to increase the available beam current. The ideal field pattern for the buncher cavity is sawtooth. To make the field pattern similar to a sawtooth waveform, a multiharmonic buncher was adopted. The design process for the multiharmonic buncher includes a beam dynamics calculation and three-dimensional electromagnetic simulation. In addition to the system design for pulsed proton generation, a test bench with a microwave ion source is under preparation to test the performance of the system. The design study results concerning the pulsed proton beam generation and the test bench preparation with some preliminary test results are presented in this paper.

Fabrication of Probe Beam by Using Joule Heating and Fusing (절연절단법을 이용한 프로브 빔의 제작)

  • Hong, Pyo-Hwan;Kong, Dae-Young;Lee, Dong-In;Kim, Bonghwan;Cho, Chan-Seob;Lee, Jong-Hyun
    • Journal of Sensor Science and Technology
    • /
    • v.22 no.1
    • /
    • pp.89-94
    • /
    • 2013
  • In this paper, we developed a beam of MEMS probe card using a BeCu sheet. Silicon wafer thickness of $400{\mu}m$ was fabricated by using deep reactive ion etching (RIE) process. After forming through silicon via (TSV), the silicon wafer was bonded with BeCu sheet by soldering process. We made BeCu beam stress-free owing to removing internal stress by using joule heating. BeCu beam was fused by using joule heating caused by high current. The fabricated BeCu beam measured length of 1.75 mm and width of 0.44 mm, and thickness of $15{\mu}m$. We measured fusing current as a function of the cutting planes. Maximum current was 5.98 A at cutting plane of $150{\mu}m^2$. The proposed low-cost and simple fabrication process is applicable for producing MEMS probe beam.

Some Characteristics of Ion Beam Source for $\gamma$-Coefficient Measurement of MgO Thin Film (MgO 박막의 $\gamma$ 계수 측정용 이온빔원의 시작 및 동작특성)

  • Jeong, Shin-Soo;Kim, Jun-Ho;Kim, Hee-Je;Cho, Jung-Soo;Park, Chung-Hoo;Park, Cha-Soo
    • Proceedings of the KIEE Conference
    • /
    • 1997.07e
    • /
    • pp.1752-1754
    • /
    • 1997
  • The Kaufman type ion beam source with focusing lens was prepared to measure $\gamma$-coefficient of MgO thin film. Initial discharge of the system was started with the discharge voltage of 25V, the cathode filament current of 5.5A at the constant magnetic field of 150G. The system shows the maximum ion current density of $120{\mu}A/cm^2$, energy dispersion of 200eV and beam divergence of $30^{\circ}$ under the condition of Ar gas pressure $2.5{\times}10^{-4}Torr$, the beam voltage of 500V, the discharge voltage of 90V, the accelerator voltage of -200V and the cathode filament current of 6.1A. When the focusing lens was installed onto the ion beam source, the spreadness diameter of ion beam was about 10mm.

  • PDF

A Study on composition of current stable negative resistance circuits. (전류안정부저항회로의 구성에 관한 연구)

  • 박의열
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.10 no.1
    • /
    • pp.9-17
    • /
    • 1973
  • This paper dealt with composition of current stable negatil'e resistance circuit based on Beam resistance of the tube SAMUEL SEBLY suggested. Beam resistance which is decreased by input current increment on definite region of current, accompanied generation of equivalent e. m. f on model circuit. With equivalent e. m. f there appeared increased current on circuit but decrease of terminal voltage. Bloc constructed by above concept induced transistorized circuit which have NPN and a PNP Transistor. Circuit operation predicted and calculated values of negative resistance are coincident with experimental results. A Circuit proposed on this paper sllowed good linearity on Ve-Ji characteristics.

  • PDF

Vibration Suppression of a Cantilever Beam Using MTMD (MTMD를 이용한 보의 진동 억제)

  • Bae, Jae-Sung;Hwang, Jai-Hyuk;Kim, Jong-Hyuk;Lim, Jae-Hyuk
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.21 no.12
    • /
    • pp.1091-1097
    • /
    • 2011
  • In the present study, TMD(tuned mass damper) with eddy current damping is proposed to suppress the vibration of a cantilever beam effectively. The advantages of TMD are that it is simple and its performance are excellent at any particular frequency. However, TMD may have the low performance at other frequency. To solve this problem and improve its performance, this study applies the eddy current damping to TMD. This TMD with ECD is named as MTMD(magnetically tuned mass damper). MTMD is designed for the vibration suppression of a cantilever beam. The mathematical modeling, simulation, and experiments of the cantilever beam with MTMD are performed. From analytic and experimental results, it can be concluded that the vibration suppression performance of MTMD are excellent.

Application Technologies of Pulsed Power with the High Voltage and Current (고전압.대전류 pulsed power의 이용기술)

  • Lee, Hyeong-Ho;Kim, Young-Bae
    • Proceedings of the KIEE Conference
    • /
    • 1997.07e
    • /
    • pp.1678-1680
    • /
    • 1997
  • The pulsed power with the high voltage and current can be used to the fields of high speed pulses of energy in different forms such as electric current and voltage, electron beam, ion beam, x-rays, gamma rays, heat, magnetics fields, sound and shock waves. This paper is directed mainly at electrical engineers working on production and practical application of high speed pulsed power with high voltage and current.

  • PDF

A Feasibility Study on the Cold Hollow Cathode Gas Ion Source for Multi-Aperture Focused Ion Beam System (다개구 이온빔 가공장치용 냉음극 방식의 가스 이온원의 가능성 평가에 관한 연구)

  • Choi, Sung-Chang;Kang, In-Cheol;Han, Jae-Kil;Kim, Tae-Gon;Min, Byung-Kwon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.3
    • /
    • pp.383-388
    • /
    • 2011
  • The cold hollow cathode gas ion source is under development for multi aperture focused ion beam (FIB) system. In this paper, we describe the cold hollow cathode ion source design and the general ion source performance using Ar gas. The glow discharge characteristics and the ion beam current density at various operation conditions are investigated. This ion source can generate maximum ion beam current density of approximately 120 mA/$cm^2$ at ion beam potential of 10 kV. In order to effectively transport the energetic ions generated from the ion source to the multi-aperture focused ion beam(FIB) system, the einzel lens system for ion beam focusing is designed and evaluated. The ions ejected from the ion source can be forced to move near parallel to the beam axis by adjusting the potentials of the einzel lenses.