• 제목/요약/키워드: Beam Characteristics

검색결과 3,081건 처리시간 0.046초

철근 콘크리트 기둥과 철골 보 접합부의 거동 평가틀 위한 해석적 연구 (The Analytical Study on the Structural Performance of Beam-Column Connections of RC Column and Steel Beam)

  • 홍성헌;한상환;류천;이리형
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 1998년도 봄 학술발표회 논문집
    • /
    • pp.110-116
    • /
    • 1998
  • The three-dimensional nonlinear analysis on the partial tension experiment of Beam-Column connections in hybrid connections with RC columns and S beams is simulated. In this paper, mechanical characteristics between steel plates and concrete is investigated. Also the stress transfer mechanism prior to beam-column connection analysis was considered by using joint element.

  • PDF

슬래브와 구조특성을 고려한 철골 모멘트 접합부의 지진거동 (Seismic Behavior of Steel Moment Connections with a Slab and Different Structural Characteristics)

  • 조창빈
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 2003년도 춘계 학술발표회논문집
    • /
    • pp.200-207
    • /
    • 2003
  • The seismic behaviors of steel moment connections are investigated based on the numerical analysis of the connections with US and Japanese typical details. The rupture index, representing the fracture potential, is used to evaluate the ductility of the connections at the critical location. The results show that the presence of a slab increases the beam strength, imposes constraint near the beam top flange, and consequently, induces concentrated deformation near the beam access hall, which reduces the ductility of the connection. The total deformation capacity of the connection depends not only on a beam but also on a column and panel zone.

  • PDF

Experimental Cyclic Behavior of Precast Hybrid Beam-Column Connections with Welded Components

  • Girgin, Sadik Can;Misir, Ibrahim Serkan;Kahraman, Serap
    • International Journal of Concrete Structures and Materials
    • /
    • 제11권2호
    • /
    • pp.229-245
    • /
    • 2017
  • Post-earthquake observations revealed that seismic performance of beam-column connections in precast concrete structures affect the overall response extensively. Seismic design of precast reinforced concrete structures requires improved beam-column connections to transfer reversed load effects between structural elements. In Turkey, hybrid beam-column connections with welded components have been applied extensively in precast concrete industry for decades. Beam bottom longitudinal rebars are welded to beam end plates while top longitudinal rebars are placed to designated gaps in joint panels before casting of topping concrete in this type of connections. The paper presents the major findings of an experimental test programme including one monolithic and five precast hybrid half scale specimens representing interior beam-column connections of a moment frame of high ductility level. The required welding area between beam bottom longitudinal rebars and beam-end plates were calculated based on welding coefficients considered as a test parameter. It is observed that the maximum strain developed in the beam bottom flexural reinforcement plays an important role in the overall behavior of the connections. Two additional specimens which include unbonded lengths on the longitudinal rebars to reduce that strain demands were also tested. Strength, stiffness and energy dissipation characteristics of test specimens were investigated with respect to test variables. Seismic performances of test specimens were evaluated by obtaining damage indices.

점탄성층을 삽입한 3층 적층보의 진동감쇠특성에 관한 연구 (A Study on the Characteristics of Vibration Damping of a Beam with Inserted Viscoelastic Layer)

  • 박응순;박세만;박명균;박상규
    • 소음진동
    • /
    • 제7권3호
    • /
    • pp.511-519
    • /
    • 1997
  • For a number of years it has been known that flexural vibration in a beam and plate can be damped by the application of layer of damping (viscoelastic) material that is in turn constrained by a backing layer or foil. In this study, a quantitative analysis of damping of the sandwich beam has been performed by using impact test. The damping is characterized by the loss factor .etha. in which the damping is normalized by imaginary part of the complex bending stiffiness of the beam. Results show that the relative thickness of the sandwich beam gives more effect on the riatural-frequencies and loss factor than the variation of width does. It is also shown that the Ross-Kerwin-Ungar equation and impact test can be effectively used to identify the damping characteristic of the sandwich beam and viscoelastic material.

  • PDF

레이저빔을 이용한 알루미늄의 미세가공 (Micro Machining of Aluminium using Pulsed Laser Beam)

  • 신홍식
    • 융복합기술연구소 논문집
    • /
    • 제4권2호
    • /
    • pp.41-45
    • /
    • 2014
  • Micro fabrication technologies of aluminium have been required to satisfy many demands in technology fields. Pulsed laser beam machining can be an alternative method to accomplish the micro machining of aluminium. Pulsed laser beam can be applied to micro machining such as micro drilling and milling. Using pulsed laser beam, the machining characteristics of aluminium in micro drilling and milling were investigated according to average power, repetition rate, moving speed of spot. The laser beam machining with the optimal conditions can achieve precise micro figures. As a result, micro pattern, text and structures on aluminium surface was successfully fabricated by pulsed laser beam machining.

엑사이머 레이저 어블레이션 가공에서의 빔변수의 영향 (Effects of Beam Parameters on Excimer Laser Ablation)

  • 방세윤
    • 한국정밀공학회지
    • /
    • 제22권7호
    • /
    • pp.38-46
    • /
    • 2005
  • In laser machining such as drilling with $CO_2$ or Nd:YAG laser, and etching or ablation with Excimer laser, one of the most important parameters affecting the machining is known to be beam characteristics. In this paper a numerical study is performed to investigate the effects of beam parameters, especially in the process of excimer laser ablation of polymers. Results of different beam conditions reveal that if the ablated depth is small compared to beam size the simple photochemical etching model is suitable to predict the etched shape, and that the importance of precise alignment becomes large as beam quality factor becomes larger.

Analyzing nonlinear mechanical-thermal buckling of imperfect micro-scale beam made of graded graphene reinforced composites

  • Khalaf, Basima Salman;Fenjan, Raad M.;Faleh, Nadhim M.
    • Advances in materials Research
    • /
    • 제8권3호
    • /
    • pp.219-235
    • /
    • 2019
  • This research is devoted to analyzing mechanical-thermal post-buckling behavior of a micro-size beam reinforced with graphene platelets (GPLs) based on geometric imperfection effects. Graphene platelets have three types of dispersion within the structure including uniform-type, linear-type and nonlinear-type. The micro-size beam is considered to be perfect (ideal) or imperfect. Buckling mode shape of the micro-size beam has been assumed as geometric imperfection. Modified couple stress theory has been used for describing scale-dependent character of the beam having micro dimension. Via an analytical procedure, post-buckling path of the micro-size beam has been derived. It will be demonstrated that nonlinear buckling characteristics of the micro-size beam are dependent on geometric imperfection amplitude, thermal loading, graphene distribution and couple stress effects.