• 제목/요약/키워드: Bayesian regression

검색결과 264건 처리시간 0.034초

A Short Note on Empirical Penalty Term Study of BIC in K-means Clustering Inverse Regression

  • Ahn, Ji-Hyun;Yoo, Jae-Keun
    • Communications for Statistical Applications and Methods
    • /
    • 제18권3호
    • /
    • pp.267-275
    • /
    • 2011
  • According to recent studies, Bayesian information criteria(BIC) is proposed to determine the structural dimension of the central subspace through sliced inverse regression(SIR) with high-dimensional predictors. The BIC may be useful in K-means clustering inverse regression(KIR) with high-dimensional predictors. However, the direct application of the BIC to KIR may be problematic, because the slicing scheme in SIR is not the same as that of KIR. In this paper, we present empirical penalty term studies of BIC in KIR to identify the most appropriate one. Numerical studies and real data analysis are presented.

A Bayesian Method for Narrowing the Scope fo Variable Selection in Binary Response t-Link Regression

  • Kim, Hea-Jung
    • Journal of the Korean Statistical Society
    • /
    • 제29권4호
    • /
    • pp.407-422
    • /
    • 2000
  • This article is concerned with the selecting predictor variables to be included in building a class of binary response t-link regression models where both probit and logistic regression models can e approximately taken as members of the class. It is based on a modification of the stochastic search variable selection method(SSVS), intended to propose and develop a Bayesian procedure that used probabilistic considerations for selecting promising subsets of predictor variables. The procedure reformulates the binary response t-link regression setup in a hierarchical truncated normal mixture model by introducing a set of hyperparameters that will be used to identify subset choices. In this setup, the most promising subset of predictors can be identified as that with highest posterior probability in the marginal posterior distribution of the hyperparameters. To highlight the merit of the procedure, an illustrative numerical example is given.

  • PDF

가우시언 과정의 회귀분석과 금융수학의 응용 (Gaussian Process Regression and Its Application to Mathematical Finance)

  • 임현철
    • 한국수학사학회지
    • /
    • 제35권1호
    • /
    • pp.1-18
    • /
    • 2022
  • This paper presents a statistical machine learning method that generates the implied volatility surface under the rareness of the market data. We apply the practitioner's Black-Scholes model and Gaussian process regression method to construct a Bayesian inference system with observed volatilities as a prior information and estimate the posterior distribution of the unobserved volatilities. The variance instead of the volatility is the target of the estimation, and the radial basis function is applied to the mean and kernel function of the Gaussian process regression. We present two types of Gaussian process regression methods and empirically analyze them.

베이지안 순서형 프로빗 준모수 회귀 모형 : 국민건강영양조사 2016 자료를 통한 흡연양태와 커피섭취 간의 관계 분석 (Bayesian ordinal probit semiparametric regression models: KNHANES 2016 data analysis of the relationship between smoking behavior and coffee intake)

  • 이다솜;이은지;조성일;최태련
    • 응용통계연구
    • /
    • 제33권1호
    • /
    • pp.25-46
    • /
    • 2020
  • 본 논문에서는 Bayesian spectral analysis regression (BSAR) 방법론을 이용한 베이지안 순서형 프로빗 준모수 회귀모형에 대해서 고찰한다. 순서형 프로빗 회귀모형은 순서가 있는 범주형 자료를 모형화하는 방법으로, 정규 분포의 분포함수의 역함수인 프로빗 연결함수를 이용해 각 범주의 확률과 설명변수을 연결함으로써 반응변수의 확률을 모형화한다. 베이지안 프로빗 회귀 모형은 정규 분포를 따르는 잠재변수를 도입함으로써 사후 분포 도출을 용이하게 하고, 절단점에 따라 나뉘어지는 잠재변수들의 값에 따라서 반응 변수들이 범주화된다. 본 논문에서는 이러한 잠재 변수 방법을 확장해 BSAR 방법론에 기반하여 단조증가/감소와 같은 형태제약을 반영할 수 있는 베이지안 이항형 및 순서형 프로빗 준모수 회귀모형에 대해 연구한다. 모의실험을 통하여 이항형 프로빗 준모수 회귀모형과 기존의 다른 모형들 간의 적합결과를 비교하고, 형태 제약에 따른 순서형 프로빗 준모수 회귀모형의 적합결과를 비교 분석하도록 한다. 아울러, 국민건강영양조사 제 7기 1차년도 (2016) 자료(Korean National Health and Nutrition Examination Survey (KNHANES), 2016)를 바탕으로, 본 논문에서 고찰한 이항형 및 순서형 프로빗 준모수 회귀모형을 적용하여, 흡연양태와 커피섭취 간의 관계에 대한 실증적 분석을 수행한다.

Bayesian 다중회귀분석을 이용한 저수량(Low flow) 지역빈도분석 (Regional Low Flow Frequency Analysis Using Bayesian Multiple Regression)

  • 김상욱;이길성;성진영
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2008년도 학술발표회 논문집
    • /
    • pp.169-173
    • /
    • 2008
  • 본 연구는 저수량 지역 빈도분석(regional low flow frequency analysis)을 수행하기 위하여 일반최소자승법(ordinary least squares method)을 이용한 Bayesian 다중회귀분석을 적용하였으며, 불확실성측면에서의 효과를 탐색하기 위하여 Bayesian 다중회귀분석에 의한 추정치와 t 분포를 이용하여 산정한 일반 다중회귀분석의 추정치의 신뢰구간을 비교분석하였다. 각 재현기간별 비교결과를 보면 t 분포를 이용하여 산정된 평균 추정치와 Bayesian 다중회귀분석에 의한 평균 추정치는 크게 다르지 않았다. 그러나 불확실성 측면에서 평가해볼 때 신뢰구간의 상한추정치와 하한추정치의 차이는 Bayesian 다중회귀분석을 사용한 경우가 기존 방법을 사용한 경우보다 훨씬 작은 것으로 나타났으며, 이로부터 저수량(low flow) 지역 빈도분석을 수행하는 경우 Bayesian 다중회귀분석이 일반 회귀분석보다 불확실성을 표현하는데 있어서 우수하다는 결과를 얻을 수 있었다. 또한 낙동강 유역에 2개의 미계측 유역을 선정하고 구축된 Bayesian 다중회귀모형을 적용하여 불확실성을 포함한 미계측 유역에서의 저수량(low flow)을 추정하였으며 이와 같은 방법이 미계측 유역에서의 저수(low flow) 특성을 나타내는 데 있어서 효과적일 수 있음을 입증하였다.

  • PDF

폴랴-감마 잠재변수에 기반한 베이지안 영과잉 음이항 회귀모형: 약학 자료에의 응용 (A Bayesian zero-inflated negative binomial regression model based on Pólya-Gamma latent variables with an application to pharmaceutical data)

  • 서기태;황범석
    • 응용통계연구
    • /
    • 제35권2호
    • /
    • pp.311-325
    • /
    • 2022
  • 0의 값을 과도하게 포함하는 가산자료는 다양한 연구 분야에서 흔히 나타난다. 영과잉 모형은 영과잉 가산자료를 분석하기 위해 가장 일반적으로 사용되는 모형이다. 영과잉 모형에 대한 전통적인 베이지안 추론은 조건부 사후분포의 형태가 폐쇄형 분포로 나타나지 않아 모형 적합 과정이 용이하지 않다는 한계점이 존재했다. 그러나 최근 Pillow와 Scott (2012)과 Polson 등 (2013)이 제안한 폴랴-감마 자료확대전략으로 인해, 로지스틱 회귀모형과 음이항 회귀모형에서 깁스 샘플링을 통한 추론이 가능해지면서, 영과잉 모형에 대한 베이지안 추론이 용이해졌다. 본 논문에서는 베이지안 추론에 기반한 영과잉 음이항 회귀모형을 Min과 Agresti(2005)에서 분석된 약학 연구 자료에 적용해본다. 분석에 사용된 자료는 경시적 영과잉 가산자료로 복잡한 자료 구조를 가지고 있다. 모형 적합 과정에서는 깁스 샘플링을 통한 추론을 수행하기 위해 폴랴-감마 자료확대전략을 사용한다.

Robustness of model averaging methods for the violation of standard linear regression assumptions

  • Lee, Yongsu;Song, Juwon
    • Communications for Statistical Applications and Methods
    • /
    • 제28권2호
    • /
    • pp.189-204
    • /
    • 2021
  • In a regression analysis, a single best model is usually selected among several candidate models. However, it is often useful to combine several candidate models to achieve better performance, especially, in the prediction viewpoint. Model combining methods such as stacking and Bayesian model averaging (BMA) have been suggested from the perspective of averaging candidate models. When the candidate models include a true model, it is expected that BMA generally gives better performance than stacking. On the other hand, when candidate models do not include the true model, it is known that stacking outperforms BMA. Since stacking and BMA approaches have different properties, it is difficult to determine which method is more appropriate under other situations. In particular, it is not easy to find research papers that compare stacking and BMA when regression model assumptions are violated. Therefore, in the paper, we compare the performance among model averaging methods as well as a single best model in the linear regression analysis when standard linear regression assumptions are violated. Simulations were conducted to compare model averaging methods with the linear regression when data include outliers and data do not include them. We also compared them when data include errors from a non-normal distribution. The model averaging methods were applied to the water pollution data, which have a strong multicollinearity among variables. Simulation studies showed that the stacking method tends to give better performance than BMA or standard linear regression analysis (including the stepwise selection method) in the sense of risks (see (3.1)) or prediction error (see (3.2)) when typical linear regression assumptions are violated.

On Flexible Bayesian Test Criteria for Nested Point Null Hypotheses of Multiple Regression Coefficients

  • Jae-Hyun Kim;Hea-Jung Kim
    • Communications for Statistical Applications and Methods
    • /
    • 제3권3호
    • /
    • pp.205-214
    • /
    • 1996
  • As flexible Bayesian test criteria for nested point null hypotheses of multiple regression coefficients, partial and overall Bayes factors are introduced under a class of intuitively meaningful prior. The criteria lead to a simple method for considering different prior beliefs on the subspaces that constitute a partition of the coefficient parameter space. A couple of tests are suggested based on the criteria. It is shown that they enable us to obtain pairwise comparisons of hypotheses of the partitioned subspaces. Through a Monte Carlo simulation, performance of the tests based on the criteria are compared with the usual Bayesian test (based on Bayes factor)in terms of their respective powers.

  • PDF

Bayesian curve-fitting with radial basis functions under functional measurement error model

  • Hwang, Jinseub;Kim, Dal Ho
    • Journal of the Korean Data and Information Science Society
    • /
    • 제26권3호
    • /
    • pp.749-754
    • /
    • 2015
  • This article presents Bayesian approach to regression splines with knots on a grid of equally spaced sample quantiles of the independent variables under functional measurement error model.We consider small area model by using penalized splines of non-linear pattern. Specifically, in a basis functions of the regression spline, we use radial basis functions. To fit the model and estimate parameters we suggest a hierarchical Bayesian framework using Markov Chain Monte Carlo methodology. Furthermore, we illustrate the method in an application data. We check the convergence by a potential scale reduction factor and we use the posterior predictive p-value and the mean logarithmic conditional predictive ordinate to compar models.

A Strategy Bayesian Model to Predict Profit of Construction Projects

  • Park, Sung-Hyuk;Kim, Sang-Yong
    • Architectural research
    • /
    • 제13권3호
    • /
    • pp.49-56
    • /
    • 2011
  • Competitive bidding in construction is concerned with contractors making strategic decisions in respect of determination of bid price if contractors opt to bid. This study presents a strategy model for deciding optimum tender price with reflecting appropriate profit in competitive bidding using Bayesian regression analysis (BRA). The purpose of the developed model is to help contractors to secure suitable profitability by predicting the actual profit based on key variables. They may affect construction cost at bidding phase, ultimately which help contractors to secure high quality output. The model was tested empirically by application to a bidding dataset collected from a large South Korea contractor. BRA allows contractors to estimate more accurate actual profit by reflecting not only objective information but also subjective experiences and judgments. Consequently, the model can contribute to improvement of decision-making process for setting an optimum tender price.