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Abstract

According to recent studies, Bayesian information criteria(BIC) is proposed to determine the structural di-
mension of the central subspace through sliced inverse regression(SIR) with high-dimensional predictors. The
BIC may be useful in K-means clustering inverse regression(KIR) with high-dimensional predictors. However,
the direct application of the BIC to KIR may be problematic, because the slicing scheme in SIR is not the same
as that of KIR. In this paper, we present empirical penalty term studies of BIC in KIR to identify the most
appropriate one. Numerical studies and real data analysis are presented.

Keywords: Bayesian information, inverse regression, multivariate regression, K-means cluster-
ing.

1. Introduction

The goal of sufficient dimension reduction(SDR) in regression of Y|X € R? replaces the original
p-dimensional many-valued or continuous predictors X by a lower-dimensional linear projection pre-
dictor without loss of information about the conditional distribution of Y|X. That is, SDR pursues to
find @ € RP*? such that

Y 1L X|e™X, (1.1)

where 1 stands for independence and g < p.

Equation (1.1) directly implies that the two conditional distributions of ¥|X and Y|aTX are the
same. Subsequently, we attain the dimension reduction of X through usage of a"X. Then a subspace
spanned by the columns of such « is called a dimension reduction subspace, and SDR typically seeks
for the intersection of all dimension reduction subspaces. Then the intersection is called the central
subspace Syx. By its construction, Syx has the minimal dimension and is unique, if it exists. The
existence of Syxx is guaranteed under various mild conditions such as the open and convex support of
X. The true dimension and an orthonormal basis matrix of Syjx will be denoted as d and n € RP>d,
Then the lower-dimensional linear projection predictor "X is called sufficient predictors.

One of the popular SDR methods to estimate Syx should be a methodology of sliced inverse
regression (SIR; Li, 1991). The SIR estimates the structural dimension and an orthonormal basis of
Syx through constructing a sample version of E(X[Y) by slicing Y. For the dimension determination,
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weighted chi-squared tests(WCT) are usually done. The WCT, however, has two major deficits. One
is that the WCT cannot properly handle the significance level during the entire dimension tests, and
the other is that it is limited to regressions of n < p. To overcome these deficits, Bayesian information
criteria is proposed by Zhu et al. (2006), who recommend a proper form of penalty term in SIR.

For a multivariate regression of Y € R’|X, the definition of the central subspace still holds. How-
ever, usual application of SIR in such regressions is problematic, because the number of slices in-
creases exponentially. To avoid this problem, Setodji and Cook (2004) proposed K-means clustering
inverse regression(KIR), which constructs slices through K-means clustering of Y. Once Y is clus-
tered, SIR is applied in a typical way. Therefore, in KIR, we can use the BIC for the dimension
determination. Since the slicing schemes in SIR and KIR are different, however, we cannot directly
use the penalty term recommended by Zhu et al. (2006).

This paper conducts empirical studies of penalty terms of the BIC for KIR for choosing the most
appropriate one, which gives the most robust results in dimension estimation regardless of true mul-
tivariate regression models. For this, we consider two types of regressions. One is a case of n > p,
which is a common type of regression, and the other is that of n < p. In the latter case, we have found
no literature studies as of present.

2. Inverse Regressions and Bayesian Information Criteria
2.1. Sliced inverse regression

One of the most popular SDR methods to recover Syx is sliced inverse regression (SIR; Li, 1991).
The SIR constructs a subspace S{E(X]|Y)}, which is a subspace spanned by E(X|Y) by varying Y.

Then linearity condition that E(X|"X) is linear in ' X guarantees that S{E(X|Y)} € Syx. The
linearity condition is common in SDR literature. If X has an elliptically contoured distribution, the
condition is automatically satisfied. In the case that the linearity condition does not hold, X can often
be one-to-one transformed to satisfy this condition. By assuming coverage condition of S{E(X|Y)} =
Syx, the SIR recovers Syx exhaustively. The coverage condition seems mild and has reasonable
approximation in SDR literature according to Cook and Ni (2005).

Since it is known that S{E(X]Y)} = S[Mgr := cov{E(X|Y)}], the sample version of cov{E(X]|Y)}
is usually constructed to estimate Syx as follows :

(1) If Y is categorical, each category forms slices. If ¥ is many-valued or continuous, divide the
observed range of Y into 4 slices Jj,.

(2) Compute sample means of X within each slice, X, = 1/n, 2v.es, Xi» s = 1,..., h, where ny is the
number of observations within Jj.

(3) Mg := CoVIEXIV)) = 2h, £i(X, - X)X, - X)T, where f; = n/nand X = (1/n) T1_, X;.

Once Msm is constructed, then the true structural dimension d and basis 1 of Syjx are estimated by
spectral decomposition of MSIR. In the population level, the true rank of Mgy is equal to d, and hence
d can be estimated by identifying non-zero eigenvalues of Mgg throughout testing the following
sequence of hypotheses:

(1) Start testing Hy : d = m versus Hy : d > m withm = 0.
(2) If Hy is rejected, then add 1 to m. Repeat (1).

(3) Repeat steps 1 and 2 for the first time Hj is not rejected. Then the hypothesized d set d.
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This test procedure requires a statistic for Hy : d = m, which will be discussed in a later subsection.
Once d is determined, #} is constructed from the eigenvectors corresponding to non-zero eigenvalues
of MSIR~

2.2. K-means inverse regression

With multi-dimensional responses Y = (Yi,..., Y,)T, the number of slices increase exponentially.
Therefore, for high dimensional responses, the usual slicing scheme faces the curse of dimensionality.
For example, letting r = 4, the minimum total number of slices will be 2* = 16, and this minimum
number of slices may not be effective for a small sample of size 100 or less. Although SIR can be
implemented in this example, we cannot expect a reliable estimate for Syjx.

In terms of methodology, the slicing procedure is only required to estimate the inverse mean
E(X]Y). To construct slices more effectively, we cluster the responses Y by a K-means clustering
algorithm and use the clusters as slices. Once the clusters are formed, SIR can be applied in a typical
way. Setodji and Cook (2004) call this approach K-means inverse regression(KIR).

2.3. Weighted chi-squared tests and Bayesian information criteria

Usual statistics for testing Hy : d = m discussed in Section 2.1 is as follows:
~ p ~
A, =n Z A, m=0,1,....min(p—1,h—1),
Jj=m+1

where 1; > --- > /Almin(,,,h,l) > imin(p’h71)+1 == /Alp = 0 are the ordered eigenvalues of Mgr.

According to Bura and Cook (2001), the statistics A,, tends in distribution to y? or weight sum
of independent y? with one degree of freedom. The test statistics are usually used in SIR for the
dimension determination. In the sequential dimension tests with A,,, the choice of the nominal level
at each step is essential in estimating d. However, the nominal level at each step does not control the
nominal level of the entire test procedure. In addition, the asymptotics of A,, fails with n < p, and
hence the weighted chi-squared tests are not possible in such case.

To avoid these deficits, Zhu et al. (2006) proposed Bayesian information criteria(BIC) to estimate
d. First we construct Q = Msm +1,. Let 0> > 9,, > 1 be the ordered eigenvalues of Q. Define 7
as the number of & ; > 1. Then Bayesian information based on this is as follows:

)4
A N ComQ2p-m+1 .
G(m):g > (1oge,+1—ej)—%, m=0,1,... mn(p—1,h-1), (2.1)

Jj=1+min(r,m)

where C,, is a penalty term.
Then an estimate d},lc of d is the maximizer m of G(m), that is,

G (dBIC) - OSmSI&EPI(,h—I)G(m).

Under mild conditions, chlC is consistent. It is clear that chlC depends on the choice of the number of
slices and C,,. Zhu et al. (2006) discuss that dpjc is quite robust to the number of slices and suggest
C, = (h/n)(0.5logn + 0.1n'/3)/2.
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3. Adaptation of BIC in KIR

The quantity G(m) given in (2.1) clearly depends on the forms of the penalty C,,. We investigate C,
more explicitly. According to Zhu et al. (2006), C,, must satisfy the following two conditions for d to
be a consistent estimate of d:

fort>0and2t>s, (a) lim C,/n'™* =0; (b) lim C,/n'™ = co.
n—+co n—+00

If we select C,, = O(n%), the number a should be selected from 1 — 2 < a < 1 — s, equivalently
4s < a < 1 — s, where O(n?) stands for usual Big-O notations, that is, C, = O(n“) means that
lim,, 40 |Cyl/In?| £ M with a constant M.

Zhu et al. (2006) divide C, into two parts: C,, = ¢~ 'W,. For the constant ¢, Zhu et al. (2006)
selected the average sample sizes per slice n/h. It is known that the WCT depends on the number of
slices. Therefore, the choice of n/h for ¢ is very reasonable, because the BIC should also account for
the slice size impact in the structural dimension estimation.

For W, various candidates can be considered as forms of n* with 0 < 4s < a < 1 — s for fixed s.
In BIC context, one of the popular choices for n“ is logn (Schwarz, 1978). Besides of logn, Zhu et
al. (2006) also consider n'/? and several linear combinations of the two. From these candidates, Zhu
et al. (2006) found the most appropriate C,, for SIR through simulation studies.

In KIR, we cannot expect the same results as SIR, because slicing schemes of KIR and SIR are
clearly different. Usual slicing scheme in SIR is to divide response variables into / slices to have
almost equally samples per each slice. However, K-means clustering algorithm does not normally
construct clusters to have almost equally samples per cluster. In addition, in KIR, we restrict the mini-
mum samples per cluster to two for each cluster to be informative in estimation of E(X[Y). Therefore,
it is straightforward that Zhu et al.’s suggestion of C,, = (h/n)(0.5logn + 0. 1n'/3)/2 for SIR may not
be a best one in KIR.

Here we consider the most appropriate C,, for KIR with two cases of n > p and n < p. The
construction of sample kernel matrices for the KIR and implementation of BIC are not restricted to
either n > p and n < p. Again C,, may be not the same in both the cases.

Following the guidance of Zhu et al. (2006), logn, n'/3, and their linear combinations will be
considered as choices for W,. And, for ¢, we will consider average sample sizes per slices, n/h
and the medians of sample sizes of clusters, med(/). Based on the above suggestions, the following
candidates for C,, will be considered for n > p and n < p.

e Case l: n> p:

(1.1a) €}, = (h/n)(0.1logn +0.5n'73); (1.1b) Cl2, = med(h)! (0.11ogn +0.5n'3)
(1.22) €%, = (h/n)(0.11ogn +0.5n'3) /2; (1.2b) €2, = med(h)™ (0.11ogn +0.52'/3) /2
(1.3a) ng,, = (h/n) (0.5 logn + 0.1n1/3); (1.3b) Czl;p = med(h)™! (0.5 logn + 0.1n1/3)
(14a) Cla = (h/n) (0.5 logn + 0.1n1/3) /2 (1.4b) C2 = med(h)™! (0.5 logn + 0.1n1/3) /2.

e Case2:n < p:

(2.1a) C'¢ = (h/n)logn; (2.1b) Cle¢ = med(h)~'logn

n<p n<p
(2.2a) C2, = (h/m)n'P; (2.2b) €}, = med(h)"'n'/
(23a) €3¢, = (h/n)(logn+n'?) /2, (22¢) Cl, = med(h)™" (logn +n'?) /2.
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We will not consider log # and n'/? multiplied by 0.5 or 0.1 for n < p, because preliminary numerical
studies showed that they made C,;s too small and usually underestimated the true structural dimension.

From various simulated multivariate regression models, we will see which candidates give the
most robust results. To report the numerical study results, in the case of n > p, we will compute the
percentages of the decisions that d < d, d = d and d > d. We will consider C, to give the most fre-
quencies of d = d as a best one. In the case of n < p, initial interest is typically to reduce the dimension
of X enough to develop proper statistical models. In the underestimation of d, the dimension-reduced
predictors are not sufficient to have equal information to the original predictors X, while there is, at
least, no information loss about Y|X in the overestimation. Therefore, underestimation of d is more
problematic than its overestimation. Then it should be important to compute the percentages of the
decisions that d > d in summarizing the numerical studies for n < p. The percentages of the decisions
that d > d can be interpreted as the ratio of the number of correctly identified sufficient predictors to
the number of true sufficient predictors. In this sense, the percentages of d > d can be considered as
a version of true positive rate(TPR), which is a measure commonly used in biomedical literature. We
will report TPR in the case of n < p.

According to various numerical studies, for n > p, the penalty term of C}¢ = » (h/n)"1(0.51logn +
0.1n'/3) provides the most robust asymptotic results in the estimation of d, while the penalty term of

Cla » = (h/n)logn seems the best among the others for n < p.

4. Numerical Studies and Data Analysis

From the preliminary simulation results (not reported), good number of clusters should be between 5
and 7. In all simulations, we used 6 clusters.

41.n>p

To construct Model 1, 10-dimensional predictors X € R!® were randomly sampled from N(0, ¥),
where all diagonal elements of X are equal to one and all the other off-diagonal elements are equal to
0.5. Random error vectors & = (g1,...,&;)" were independently generated from N(0, 1) and & Il X.
Based on the variable configurations, we consider the following regression model introduced in Se-
todji and Cook (2004) with indicating 14 € RO =(1,1,1,1,0,...,0)T.

Model 1

Y| =c¢ TX+czexp<CngX)sl,
Y, =c1l X+c2exp{c (2—314TX)}82;
Y =1 1]X + cyexp (2c317X) 3

Yy = 1IX + C2 €Xp {C3 (1 - 1IX)} &4.

In Model 1, the central subspace Syxx is spanned by 14 regardless of the actual numbers of ¢, ¢, and
c3, and hence the structural dimension is equal to one.

The purpose of Model 1 is to see how well the true structural dimension is estimated under the
existence of heteroscedasticity. The forms of heteroscedasticity in Model 1 are quite popular, and
Cook and Weisberg (1983) developed a methodology to test this.

From Model 1, we considered the following three different scenarios: (1) homoscedastic linear
model with ¢; = ¢, = 1 and ¢3 = 0; (2) heteroscedastic linear model with ¢; = 0.1, ¢, = 1 and
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Table 1: Dimension estimation for Model 1 in Section 4.1: homoscedastic linear model

WCT Gy G, [ (& [ Gy Gy Gy
d=0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
d=1 94.0 96.8 98.6 40.2 45.2 97.0 98.8 41.4 45.0
d>2 6.0 3.2 1.4 69.8 54.8 3.0 1.1 58.6 55.0

Table 2: Dimension estimation for Model 1 in Section 4.1: heteroscedastic linear model

WCT Gsp [ [ (& [ [ Gy Gy
d=0 0.07 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00
d=1 88.60 98.60 98.20 46.00 50.40 97.40 98.60 44.40 56.20
d>2 3.80 1.20 1.80 54.00 49.60 2.60 1.40 55.60 43.80

Table 3: Dimension estimation for Model 1 in Section 4.1: heteroscedastic linear model with constant mean

WCT Crlxgp Cril;p Cizzgp ngp ngp C?zl;p Cégp ngp
d=0 7.8 0.0 0.2 0.0 0.0 0.0 0.0 0.0 0.0
d=1 88.0 97.6 97.0 46.2 49.0 97.8 98.2 46.0 53.0
d>2 4.2 2.4 2.8 53.8 51.0 2.2 1.8 54.0 47.0

c3 = 0.1; (3) heteroscedastic linear model with constant mean with ¢; = 0, ¢, = 1 and ¢3 = 0.1. In the
simulations, Model 1 was iterated 1000 times with n = 100 per each case. The dimension estimation
results are summarized in Tables 1-3. In the tables, WCT indicates weighted chi-squired tests and
is reported for comparison purpose. For the WCT, nominal level 5% was used. In the WCT, if the
percentages of d = 2 is close to 95%, the WCT performs very well. Using the BIC, the percentages
should be close to 100% for good estimation of the true structural dimension.

According Tables 1-3, among 8 candidates for C, for the BIC, C!¢ and C3  clearly dominate

n>p n>p
C2: and C* . and hence the suggestion given by Zhu et al. (2006) for SIR, which is C* , does not

n>p n>p> n>p>
hold any more in KIR.

It is hard to say which one among C!2 » and Cz;p is the best, and hence any of the four penalty
terms seems usable in practice. For homoscedastic linear models (Tables 2-3), both BIC and WCT
worked very well, but, if heteroscedasticity exits, BIC gives better dimension estimation results.

Another simulation model, Model 2, focuses on various types of mean functions along with non-
normal predictors. To construct predictors for Model 2, we generate the following variables: V; u
Uniform(-4,4),i=1,2,3, W; ~ 0.5N(0,4) + 0.5N(0, 16) and W, ~ Uniform(—4,4), and all W;s and
Wi;s are independent. Then 10-dimensional predictors are randomly generated as follows: X; = Wi,
X =V + (I/Z)Wz, X3 = -V + (1/2)W2, Xy = Vo + V3, X5 =V, - V3 and (X5,...,X10)T lﬁi
N(0,4) independent of (X1,...,Xs). Next we define that i7; € R0 = (1,0,...,0)T and m € R0 =
0,1,1,0,...,0)T. Then Model 2 is constructed as follows:

Model 2
Y, = (4 + UTX) (ngX + 2) +0.5¢;;
Ys =X +0.5 (15X) e
Y3 =X+ (ngX)z +0.5¢3;
Y4 = 0.584,

where (1, . ..,£)7 4 N(0,1) IL X.
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Table 4: Dimension estimation for Model 2 in Section 4.1

WCT [ [ [ [ ce, [ [ [
d=0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
d=1 28.2 16.2 29.0 0.4 1.8 12.4 28.4 0.0 3.0
d=2 67.2 82.6 70.6 61.4 76.0 86.4 70.6 59.0 72.2
d>3 4.6 1.2 0.4 38.2 22.2 1.2 1.0 41.0 24.8

Table 5: Dimension estimation for Model 3 in Section 4.2

Crllip Cﬁp Cﬁip Cizzip Ciszlip C;jlép
TPR 99.8 80.0 93.5 88.2 95.5 81.0
d=2 74.5 56.0 73.0 59.0 72.0 57.5

In Model 2, the central subspace Syjx is spanned by the two columns of 7, and 7,, and hence
the true structural dimension is equal to two. Model 2 has linear mean, constant mean and non-linear
mean with heteroscedasticity. In the simulations, Model 2 was iterated 1000 times with n = 100 per
each case. Since Model 2 has more complex mean structure, we expect that the percentages of d = 2
should be worse than Model 1. We summarize the simulation results in Table 4.

In Model 2, we can confirm that C;¢, and C;¢ , clearly dominate C,2, and C,2, in the estimation
of the correct decision of d = 2. And, the behaviors of C,i;p and Cﬁ;p are similar to Cfl;p and Ci;p
respectively. One notable thing is types of misspecification of d. The penalty terms of C2 , and c »
tends to underestimate d, which is a similar pattern to WCT, while C22 » and Ch , often overestimate
d. According to Table 4, the usage of BIC give a superior estimation of d than WCT. For Model 2, the
most frequencies of d = 2 happens with Ciip. Models 1 and 2 represent the characteristic behaviors
in dimension estimation we observed in other simulations. Based on these results, we conclude that
C3¢ should be the most appropriate penalty in KIR with n > p.

n>p

42.n<p

For constructing a regression of n < p, we randomly selected 200-dimensional predictors X =
Xi,...,X50) from X; N ©0,1),i =1,...,200. Then we independently generated random errors
& =(gl,...,&4)" from N(0, 1) and & 1L X. In the simulations, Model 3 was iterated 1000 times with

n = 100 per each case.
Model 3
Y1 =X+ X, *X; +0.1¢gq;
Y, = X1 +0.1exp(X2)er;
Y3 = X; +0.1&3;
Yy =X, +0.1¢g4.

In Model 3, the central subspace Syx is spanned by the two columns of (1,0, ...,0) and (0, 1,.. .,
0), and hence the true structural dimension is equal to two. Model 3 has linear mean, constant mean
and non-linear mean with heteroscedasticity. TPR for Model 3 along with the percentages of the
correct decisions that d = 2 is given in Table 5. According to Table 5, usage of the average sample
sizes of clusters always gives better TPR than that of the median sample sizes of clusters including
the percentages of d = 2. In addition, all three of logn, n'/? and 0.5(log n + n'/?) gives almost equal
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Table 6: Dimension estimation for Minneapolis school data in Section 4.3

Hy:d=0 Hy:d=1 Hy:d=2 Hy:d=3
WCT 0.000 0.043 0.241 0.659
BIC -8.796 -4.739 —5.043 -5.854

performances. However, logn seems slightly better than the other two. Since we observed similar
results from other simulations, one can use C'¢ » as a good choice of penalties for BIC in regressions
of n < p.

4.3. Data analysis-Minneapolis school

To illustrate a methodology introduced in the previous sections, we use data on the performance of
students in n = 63 Minneapolis schools studied by Cook (1998). The four dimensional responses
Y consists of the percentages P, of students in a school scoring above (A) and below (B) average
on standardized fourth and sixth grade reading comprehension tests, Y = (Pa4, Ppa, Pas, Pge)T. Sub-
tracting either pair of grade specific percentages from 100 gives the percentage of students scoring
about average on the test. We used the nine predictors in the dataset: (1) the percentage of children
receiving Aid to Families with Dependent Children(AFDC), (2) the average percentage of children
in attendance during the year (Attend), (3) the percentage of children not living with both biological
parents (B), (4) the number of children enrolled in the school (Enrol), (5) the percentage of adults in
the school area who completed high school(HS), (6) the percentage of minority children in the area
(Minority), (7) the percentage of children who started in a school, but did not finish there (Mobility)
(8) the percentage of persons in the area below the federal poverty level(PL), (9) the pupil-teacher
ratio(PTR).

The nine predictors were transformed to square-root to induce the linearity conditions. For the

dimension determination, the Bayesian informations with C3¢ ,» and p-values for the WCT up to Hy :

d = 3 are reported in Table 6. The BIC decides that d= 1, while the WCT concludes that d = 2 with
level 5%.

The p-value for Hy : d = 1 is quite close to the nominal level, and we may conclude that 4 = 1
without further investigation. To obtain useful information for deciding between d = 1 and d = 2,
however, the following simulation is considered. Define that X, = f]TX is the estimated sufficient
predictor from KIR with d = 1. We constructed new data sets from the model of Y’ Z,- = fi(Xo,) + orex;
i=1,2,...,63,k=1,2,3,4, where f; is a LOWESS smooth of Y} against X using 0.7 as the tuning
parameter, o7 = 627! S8 {Ys, — fXo))* and the &,’s are independent standard normal random
variables. These data sets were generated 1000 times in this way, and the true null hypothesis d = 1 at
nominal level 5% was tested. The percentages of d = 1 were 80.0% for the WCT and 86.3% for the
BIC. Clearly, the BIC estimates the true dimension slightly better than the WCT, we concluded that

A

d=1.

5. Discussions

In this paper, we perform empirical studies to choose the most appropriate penalty term of BIC in
K-means clustering inverse regression(KIR). For this, we consider two types of regressions. One is a
case of n > p, which is a common type of regression, and the other is that of n < p. In the two types
of regressions, we suggest two different quite good penalty terms regardless of regression models.
Zhu et al. (2006) provides a guideline about the penalty terms in BIC using sliced inverse re-
gression for regressions of n > p. Since KIR is different from sliced inverse regression in slicing
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scheme, we may expect that the penalty guidances recommended by Zhu et al. (2006) for SIR cannot
be directly applied to KIR. The studies confirm that we had better use different penalties in KIR from
Zhu et al.’s recommendation in SIR. In case of regressions of n < p, we newly recommend another
penalty term for BIC, which is different from that for regressions of n > p.

Usual weighted chi-squared tests for dimension determination in KIR are limited in n > p, and
hence KIR is clearly not fully useful in practice. Usage of BIC does not require a condition of n > p,
However, there is no clear guideline about what penalty terms should be used. In this paper we
suggest two penalty terms in the BIC throughout various empirical studies depending on relation of
n and p, and it is expected that our work provides one solution to answer the increasing demand of
high-dimensional data analysis.
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