• 제목/요약/키워드: Bayesian nonparametric model

검색결과 30건 처리시간 0.019초

Effective Computation for Odds Ratio Estimation in Nonparametric Logistic Regression

  • Kim, Young-Ju
    • Communications for Statistical Applications and Methods
    • /
    • 제16권4호
    • /
    • pp.713-722
    • /
    • 2009
  • The estimation of odds ratio and corresponding confidence intervals for case-control data have been done by traditional generalized linear models which assumed that the logarithm of odds ratio is linearly related to risk factors. We adapt a lower-dimensional approximation of Gu and Kim (2002) to provide a faster computation in nonparametric method for the estimation of odds ratio by allowing flexibility of the estimating function and its Bayesian confidence interval under the Bayes model for the lower-dimensional approximations. Simulation studies showed that taking larger samples with the lower-dimensional approximations help to improve the smoothing spline estimates of odds ratio in this settings. The proposed method can be used to analyze case-control data in medical studies.

베이지안 순서형 프로빗 준모수 회귀 모형 : 국민건강영양조사 2016 자료를 통한 흡연양태와 커피섭취 간의 관계 분석 (Bayesian ordinal probit semiparametric regression models: KNHANES 2016 data analysis of the relationship between smoking behavior and coffee intake)

  • 이다솜;이은지;조성일;최태련
    • 응용통계연구
    • /
    • 제33권1호
    • /
    • pp.25-46
    • /
    • 2020
  • 본 논문에서는 Bayesian spectral analysis regression (BSAR) 방법론을 이용한 베이지안 순서형 프로빗 준모수 회귀모형에 대해서 고찰한다. 순서형 프로빗 회귀모형은 순서가 있는 범주형 자료를 모형화하는 방법으로, 정규 분포의 분포함수의 역함수인 프로빗 연결함수를 이용해 각 범주의 확률과 설명변수을 연결함으로써 반응변수의 확률을 모형화한다. 베이지안 프로빗 회귀 모형은 정규 분포를 따르는 잠재변수를 도입함으로써 사후 분포 도출을 용이하게 하고, 절단점에 따라 나뉘어지는 잠재변수들의 값에 따라서 반응 변수들이 범주화된다. 본 논문에서는 이러한 잠재 변수 방법을 확장해 BSAR 방법론에 기반하여 단조증가/감소와 같은 형태제약을 반영할 수 있는 베이지안 이항형 및 순서형 프로빗 준모수 회귀모형에 대해 연구한다. 모의실험을 통하여 이항형 프로빗 준모수 회귀모형과 기존의 다른 모형들 간의 적합결과를 비교하고, 형태 제약에 따른 순서형 프로빗 준모수 회귀모형의 적합결과를 비교 분석하도록 한다. 아울러, 국민건강영양조사 제 7기 1차년도 (2016) 자료(Korean National Health and Nutrition Examination Survey (KNHANES), 2016)를 바탕으로, 본 논문에서 고찰한 이항형 및 순서형 프로빗 준모수 회귀모형을 적용하여, 흡연양태와 커피섭취 간의 관계에 대한 실증적 분석을 수행한다.

Characterization and modeling of a self-sensing MR damper under harmonic loading

  • Chen, Z.H.;Ni, Y.Q.;Or, S.W.
    • Smart Structures and Systems
    • /
    • 제15권4호
    • /
    • pp.1103-1120
    • /
    • 2015
  • A self-sensing magnetorheological (MR) damper with embedded piezoelectric force sensor has recently been devised to facilitate real-time close-looped control of structural vibration in a simple and reliable manner. The development and characterization of the self-sensing MR damper are presented based on experimental work, which demonstrates its reliable force sensing and controllable damping capabilities. With the use of experimental data acquired under harmonic loading, a nonparametric dynamic model is formulated to portray the nonlinear behaviors of the self-sensing MR damper based on NARX modeling and neural network techniques. The Bayesian regularization is adopted in the network training procedure to eschew overfitting problem and enhance generalization. Verification results indicate that the developed NARX network model accurately describes the forward dynamics of the self-sensing MR damper and has superior prediction performance and generalization capability over a Bouc-Wen parametric model.

모수, 비모수, 베이지안 출산율 모형을 활용한 합계출산율 예측과 비교 (A comparison and prediction of total fertility rate using parametric, non-parametric, and Bayesian model)

  • 오진호
    • 응용통계연구
    • /
    • 제31권6호
    • /
    • pp.677-692
    • /
    • 2018
  • 최근 2017년 우리나라 합계출산율은 1.05명로 2005년 1.08명 수준으로 회귀하는 현상을 보이고 있다. 1.05명은 인구대체선(2.1명), 안전선(1.5명)과도 거리가 먼 초저출산 수준이고 마치 초저출산 덫에 빠질 우려가 있다. 이에 합계출산율의 합리적인 예측과 이를 통한 출산정책에 유용한 자료를 제공하는 것은 그 어느 때 보다도 중요하다. 그 동안 다양한 통계적 방법으로 합계출산율 추이를 예측하였는데, 데이터 완비성이 높고 품질이 좋은 경우 모형 접근인 모수적 방법, 데이터 추이가 단절되거나 변동이 심한 경우 평활과 가중치를 적용한 비모수적 방법, 데이터 부족과 품질 등으로 선진국의 출산율 3단계 전이현상을 참고하여 이들의 사전분포를 활용하는 베이지안 방법 등이 적용되어 왔다. 본 연구는 최근 변동이 심한 우리나라 출산율에 모수, 비모수, 그리고 베이지안 방법을 적용하여 추정과 예측을 실시하고 도출된 결과 비교를 통해 적합성과 타당성 측면에서 어떤 방법이 합리적인지 모색하고자 한다. 분석결과 합계출산율 예측값 순위는 통계청 합계출산율이 가장 높고, 베이지안, 모수, 비모수 순으로 나타났다. 2017년 TFR 1.05명 수준을 감안할 때 모수, 비모수모형으로 도출된 합계출산율 예측값이 합리적이다. 또한 출산율 자료완비성이 높고 품질이 우수할 경우 계산 효율성과 적합도 관점에서 모수적 추정과 예측 접근 방법이 타 방법보다 우수한 것으로 도출되었다.

Bayesian Multiple Comparisons for Normal Variances

  • Kim, Hea-Jung
    • Journal of the Korean Statistical Society
    • /
    • 제29권2호
    • /
    • pp.155-168
    • /
    • 2000
  • Regarding to multiple comparison problem (MCP) of k normal population variances, we suggest a Bayesian method for calculating posterior probabilities for various hypotheses of equality among population variances. This leads to a simple method for obtaining pairwise comparisons of variances in a statistical experiment with a partition on the parameter space induced by equality and inequality relationships among the variances. The method is derived from the fact that certain features of the hierarchical nonparametric family of Dirichlet process priors, in general, make it amenable to solving the MCP and estimating the posterior probabilities by means of posterior simulation, the Gibbs sampling. Two examples are illustrated for the method. For these examples, the method is straightforward for specifying distributionally and to implement computationally, with output readily adapted for required comparison.

  • PDF

Efficient Markov Chain Monte Carlo for Bayesian Analysis of Neural Network Models

  • Paul E. Green;Changha Hwang;Lee, Sangbock
    • Journal of the Korean Statistical Society
    • /
    • 제31권1호
    • /
    • pp.63-75
    • /
    • 2002
  • Most attempts at Bayesian analysis of neural networks involve hierarchical modeling. We believe that similar results can be obtained with simpler models that require less computational effort, as long as appropriate restrictions are placed on parameters in order to ensure propriety of posterior distributions. In particular, we adopt a model first introduced by Lee (1999) that utilizes an improper prior for all parameters. Straightforward Gibbs sampling is possible, with the exception of the bias parameters, which are embedded in nonlinear sigmoidal functions. In addition to the problems posed by nonlinearity, direct sampling from the posterior distributions of the bias parameters is compounded due to the duplication of hidden nodes, which is a source of multimodality. In this regard, we focus on sampling from the marginal posterior distribution of the bias parameters with Markov chain Monte Carlo methods that combine traditional Metropolis sampling with a slice sampler described by Neal (1997, 2001). The methods are illustrated with data examples that are largely confined to the analysis of nonparametric regression models.

비선형 상태공간 모델을 위한 Point-Mass Filter 연구 (A Study on the Point-Mass Filter for Nonlinear State-Space Models)

  • 최영권
    • 산업기술연구
    • /
    • 제43권1호
    • /
    • pp.57-62
    • /
    • 2023
  • In this review, we introduce the non-parametric Bayesian filtering algorithm known as the point-mass filter (PMF) and discuss recent studies related to it. PMF realizes Bayesian filtering by placing a deterministic grid on the state space and calculating the probability density at each grid point. PMF is known for its robustness and high accuracy compared to other nonparametric Bayesian filtering algorithms due to its uniform sampling. However, a drawback of PMF is its inherently high computational complexity in the prediction phase. In this review, we aim to understand the principles of the PMF algorithm and the reasons for the high computational complexity, and summarize recent research efforts to overcome this challenge. We hope that this review contributes to encouraging the consideration of PMF applications for various systems.

혼합 조건부 종추출모형을 이용한 여름철 한국지역 극한기온의 위치별 밀도함수 추정 (Density estimation of summer extreme temperature over South Korea using mixtures of conditional autoregressive species sampling model)

  • 조성일;이재용
    • Journal of the Korean Data and Information Science Society
    • /
    • 제27권5호
    • /
    • pp.1155-1168
    • /
    • 2016
  • 기상 자료의 경우 한 지역의 기후가 인접지역의 기후와 비슷한 양상을 띄고 각 지역의 확률 밀도 함수 (probability density function)가 잘 알려진 확률 모형을 따르지 않는다는 것이 알려져 있다. 본 논문에서는 이러한 특성을 고려하여 이상 기후 현상이 뚜렷히 나타나는 여름철 평균 극한 기온(extreme temperature)의 확률 밀도 함수를 추정하고자 한다. 이를 위하여 공간적 상관관계 (spatial correlation)를 고려하는 비모수 베이지안 (nonparametric Bayesian) 모형인 조건부 자기회귀 종추출 혼합모형 (mixtures of conditional autoregression species sampling model)을 이용하였다. 자료는 이스트앵글리아 대학교 (University of East Anglia)에서 제공하는 전 지구의 최대 기온과 최소 기온자료 중 우리나라에 해당하는 지역의 자료를 사용하였다.

Grid-based Gaussian process models for longitudinal genetic data

  • Chung, Wonil
    • Communications for Statistical Applications and Methods
    • /
    • 제29권1호
    • /
    • pp.65-83
    • /
    • 2022
  • Although various statistical methods have been developed to map time-dependent genetic factors, most identified genetic variants can explain only a small portion of the estimated genetic variation in longitudinal traits. Gene-gene and gene-time/environment interactions are known to be important putative sources of the missing heritability. However, mapping epistatic gene-gene interactions is extremely difficult due to the very large parameter spaces for models containing such interactions. In this paper, we develop a Gaussian process (GP) based nonparametric Bayesian variable selection method for longitudinal data. It maps multiple genetic markers without restricting to pairwise interactions. Rather than modeling each main and interaction term explicitly, the GP model measures the importance of each marker, regardless of whether it is mostly due to a main effect or some interaction effect(s), via an unspecified function. To improve the flexibility of the GP model, we propose a novel grid-based method for the within-subject dependence structure. The proposed method can accurately approximate complex covariance structures. The dimension of the covariance matrix depends only on the number of fixed grid points although each subject may have different numbers of measurements at different time points. The deviance information criterion (DIC) and the Bayesian predictive information criterion (BPIC) are proposed for selecting an optimal number of grid points. To efficiently draw posterior samples, we combine a hybrid Monte Carlo method with a partially collapsed Gibbs (PCG) sampler. We apply the proposed GP model to a mouse dataset on age-related body weight.

A pooled Bayes test of independence using restricted pooling model for contingency tables from small areas

  • Jo, Aejeong;Kim, Dal Ho
    • Communications for Statistical Applications and Methods
    • /
    • 제29권5호
    • /
    • pp.547-559
    • /
    • 2022
  • For a chi-squared test, which is a statistical method used to test the independence of a contingency table of two factors, the expected frequency of each cell must be greater than 5. The percentage of cells with an expected frequency below 5 must be less than 20% of all cells. However, there are many cases in which the regional expected frequency is below 5 in general small area studies. Even in large-scale surveys, it is difficult to forecast the expected frequency to be greater than 5 when there is small area estimation with subgroup analysis. Another statistical method to test independence is to use the Bayes factor, but since there is a high ratio of data dependency due to the nature of the Bayesian approach, the low expected frequency tends to decrease the precision of the test results. To overcome these limitations, we will borrow information from areas with similar characteristics and pool the data statistically to propose a pooled Bayes test of independence in target areas. Jo et al. (2021) suggested hierarchical Bayesian pooling models for small area estimation of categorical data, and we will introduce the pooled Bayes factors calculated by expanding their restricted pooling model. We applied the pooled Bayes factors using bone mineral density and body mass index data from the Third National Health and Nutrition Examination Survey conducted in the United States and compared them with chi-squared tests often used in tests of independence.