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Abstract
For a chi-squared test, which is a statistical method used to test the independence of a contingency table

of two factors, the expected frequency of each cell must be greater than 5. The percentage of cells with an
expected frequency below 5 must be less than 20% of all cells. However, there are many cases in which the
regional expected frequency is below 5 in general small area studies. Even in large-scale surveys, it is difficult to
forecast the expected frequency to be greater than 5 when there is small area estimation with subgroup analysis.
Another statistical method to test independence is to use the Bayes factor, but since there is a high ratio of
data dependency due to the nature of the Bayesian approach, the low expected frequency tends to decrease the
precision of the test results. To overcome these limitations, we will borrow information from areas with similar
characteristics and pool the data statistically to propose a pooled Bayes test of independence in target areas. Jo et
al. (2021) suggested hierarchical Bayesian pooling models for small area estimation of categorical data, and we
will introduce the pooled Bayes factors calculated by expanding their restricted pooling model. We applied the
pooled Bayes factors using bone mineral density and body mass index data from the Third National Health and
Nutrition Examination Survey conducted in the United States and compared them with chi-squared tests often
used in tests of independence.

Keywords: pooled Bayes factor, nonparametric hierarchical Bayesian model, Dirichlet process,
slice sampling, small area

1. Introduction

When the contingency table consists of two multinomial variables, we test independence and obtain
measures of the association among variables. Particularly, researchers in clinical studies are highly
interested in the test because the independence test result reflects the simple relationship between
two different clinical factors. As a simple example, we can consider the hypothesis that smoking
can cause lung cancer. Smoking status is generally divided into three categories: never smoking,
previous smoking, or current smoking. Before the main analysis for smoking status and incidence of
lung cancer, a study performed a test of independence. Although the test does not show the direction
between the variables, it is important to show the possibility of the study. If an association is found
between two variables, there will be a significant difference between the occurrence rates of lung
cancer in the three categories of smoking. Naturally, clinical interest is crucial at both county and
state levels. However, such studies have a drawback in terms of the power of the hypothesis test
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because the sample size is much smaller than the unit of the state. In other words, as the sample size
decreases, power decreases.

Over the years, various attempts have been made to solve this problem. One of these solutions
is pooling strategies for data from small areas. The key to the pooling method is estimating the test
statistic used to borrow strength from neighboring areas to increase the stat power. Consonni et al.
(1995), DuMouchel et al. (1983). Evans and Sedransk (2003) developed the fully Bayesian justifi-
cation using the geometric means of Malec and Sedransk (1992), who proposed a Bayesian model to
estimate the parameter mean corresponding to the same specified experiment between similar experi-
ments. Subsequently, studies have applied the Dirichlet process proposed by Ferguson (1973) to pool
the data. Donson (2009) developed a generalization of the Dirichlet process prior, in which the model
allows dependent local pooling and borrowing of information from data with similar experiments.
Specifically, the Dirichlet process prior suggests using the slice sampling proposed by Walker (2007).
Nandram et al. (2019) developed a pooled Bayes test of independence for sparse contingency tables
based on the idea of generalization developed by Donson (2009). They constructed the hierarchical
Bayesian model with Dirichlet distribution before the test of independence between Bone Mineral
Density (BMD) and Body Mass Index (BMI) from the Third National Health and Nutrition Examina-
tion Survey (NHANES III) in the U.S. In their model, the pooling of information was implemented
from the hyperprior of an interesting parameter.

Another issue of the pooled Bayes factor (PBF) is the integration of the joint density function
to calculate the marginal likelihood. The joint density function is very complex and impossible to
integrate. Therefore, the equation is computed by Monte Carlo integration using the new method
proposed by Nandram and Kim (2002). Their method utilizes the multiplication rule of probability
to use a hierarchical Bayesian structure. The key of their new method is that the importance function
is considered with the conditional posterior density of each variable. Nandram et al. (2019) further
suggested a pooled Bayes test of independence for contingency tables. They developed a Bayesian
model using the Dirichlet multinomial hierarchical Bayesian model proposed by Nandram (1998).
Recently, Jo et al. (2021) developed a pooled hierarchical Bayesian model to analyze categorical
data from small areas using the Dirichlet multinomial distribution. They proposed the hierarchical
Bayesian model that borrows information from similar regions to pool the data, estimated the finite
population proportion, and compared it for each model.

This study constructs hierarchical Bayesian models for the pooled Bayes factor based on the
pooled test of independence proposed by Nandram et al. (2019). We expanded the restricted pooling
model proposed by Jo et al. (2021) to calculate the pooled Bayes factor and compared it with the no
pooling model, which has no pooling of data, and the complete pooling model that considers all the
regions as one group. First, we construct simple Bayesian models with two extreme cases: a com-
pletely pooled Bayesian model versus a no-pooled model. We can then identify the characteristics of
pooling from two basic models. Additionally, basic models may be expanded in the Bayesian pooling
model. We call this model the restricted-pooling model and its nonparametric version. To compare
the performance of the pooled Bayes factor, we analyze the association between BMD and BMI. The
BMI and BMD data are from the MHANES III survey data.

The association between the BMI and BMD variables is a steadily important issue in clinical stud-
ies. The BMI is a more easily comprehensible measure of obesity and is divided into four levels: (1)
Underweight: BMI less than 20 kg/m2; (2) Optimal: BMI from 20 kg/m2 to 25 kg/m2; (3) Overweight:
BMI from 25 kg/m2 to 30 kg/m2, and (4) Obese: BMI above 30 kg/m2. Additionally, BMD is an im-
portant indicator of clinical prognoses, such as osteopenia, osteoporosis, and fracture. It is measured
according to optical density per cm2 of the bone surface upon medical imaging and is categorized into
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three levels: (1) normal: BMD less than 1 standard deviation (SD) below the young non-Hispanic
white (NHW) adult mean, (2) osteopenia: BMD from 1 to 2.5 SD below the young NHW adult mean,
(3) osteoporosis - BMD more than 2.5 SD below the young NHW adult mean. This study analyzes the
BMI and BMD data using various pooled Bayes factors with hierarchical Bayesian models and com-
pares the performance and results of these models. In Section 2, we introduce hierarchical Bayesian
models for the pooled Bayes factors. In Section 3, we propose a nonparametric version of several
models. In Section 4, we present the results of the data analysis concerning the BMI and BMD data.
Finally, in Section 5, we discuss the eight models.

2. Hierarchical Bayesian parameteric models

For the sth area of S small areas, we consider the r × c contingency tables with cell counts, n jk,
which are the responses for the kth column and jth row in the area. Let πs jk denote the corresponding
probabilities of each unit cell in the sth area. When ps j and qsk are marginal probabilities for each
column and row in the sth area, the independent models have πs jk = ps jqsk, j = 1, . . . , r, k = 1, . . . , c,∑r

j=1 ps j = 1, and
∑c

k=1 psk = 1 for s = 1, . . . , S .

2.1. General models

Let nsi, i = 1, . . . , I(= rc) be the cell counts for the sth area and πsi denote the corresponding proba-
bilities of each area. We assume that

ns|πs
ind
∼ Multi(ns.,πs), s = 1, . . . , S , (2.1)

where ns = (ns1, . . . , nsI) for s = 1, . . . , S is the vector of responses, ns. =
∑I

i=1 nsi is total sum of
responses, πs = (πs1, . . . , πsI) is the corresponding probability vector of each area, and

∑I
i=1 πsi = 1.

In here, I is defined the number of cells for the table corresponding to each area. We construct the hi-
erarchical Bayesian model with a mixture of Dirichlet prior, which comprises two parts. The effective
part of the modeling is distinguished from the uncertainty part. We are interested in estimating the
parameter from the data, excluding the uncertainty of the model. This is called the restricted pooling
model and is as follows.

πs|µ, τ ∼ φDirichlet(µτ) + (1 − φ)Dirichlet(1),

π(µ, τ) =
(I − 1)!
(1 + τ)2 , τ > 0,

φ ∼ Uniform
(

1
2
, 1

)
,

where 1 is I × 1 dimensional vector with all values equal to 1, φ is from a uniform distribution with
domain (1/2, 1) and determines the proportion of uncertainty in the entire data. We assume that the
uncertain region is smaller than the effectiveness through a prior distribution of φ. The parameters
µ,τ, and φ are mutually independent, and the posterior joint density is

π (π,µ, τ, φ|n) =

S∏
s=1

 ns!∏I
i=1 nsi!

I∏
i=1

πnsi
si

φ 1
D(µτ)

I∏
i=1

π
µiτ−1
si + (1 − φ)(I − 1)


 (I − 1)!

(1 + τ)2 ,
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where n = (n1, . . . ,nS ), π = (π1, . . . ,πS ), D(µτ) =
∏I

i=1 Γ(µiτ)/Γ(
∑I

i=1 µiτ) is the multivariate Beta
function. Then the marginal likelihood in the sth area is

f (ns) =
(I − 1)!ns!∏I

i=1 nsi!

"
1

(1 + τ)2

{
3
4

D(µτ + ns)
D(µτ)

+
1
4

(I − 1)!D(ns + 1)
}

dτdµ.

We will now calculate the marginal likelihood using the properties of the definite integral of a linear
function for φ and the posterior for π. The posterior density of πs for s = 1, . . . , S is

πs | n,µ, τ ∼ Dirichlet(ns + µτ)

for the formar of integral equation and

πs | n,µ, τ ∼ Dirichlet(ns + 1).

Additionally, we can apply the new method developed by Nandram and Kim (2002).

2.2. Independence models

Let ns jk, j = 1, . . . , r, k = 1, . . . , c, be the cell counts for jth row and kth column in sth area, s = 1, . . . , S
with corresponding cell probability πs jk = ps jqsk where ps j =

∑c
k=1 πs jk and qsk =

∑r
j=1 πs jk. For our

pooled Bayes factor of independence, we assume that

ns|ps, qs
ind
∼ Multi(ns, vec(psq′s)), s = 1, . . . , S ,

where ns = (ns11, . . . , ns1c, . . . , nsr1, . . . , nsrc), ns =
∑r

j=1
∑c

k=1 ns jk, ps = (ps1, . . . , psr), q = (qs1, . . . ,
qsc),

∑r
j−1 ps j = 1,

∑c
k=1 qsk = 1. Our Bayesian model of independence for restricted pooling is

ps|µ1, τ1, φ1
iid
∼ φ1Dirichlet(µ1τ1) + (1 − φ1)Dirichlet(1p),

qs|µ2, τ2, φ2
iid
∼ φ2Dirichlet(µ2τ2) + (1 − φ2)Dirichlet(1q),

π(µ1, τ1) =
(r − 1)!

(1 + τ1)2 , π(µ2, τ2) =
(c − 1)!
(1 + τ2)2 ,

φ1 ∼ Uniform
(

1
2
, 1

)
, φ2 ∼ Uniform

(
1
2
, 1

)
,

where all parameters are mutually independent, and we assume that the uncertain region in the sam-
pled data is smaller than the effectiveness. Subsequently, the joint posterior density is

π(Ω|ns) =
ns!

∏r
j=1

∏c
k=1(ps jqsk)ns jk∏r

j=1
∏c

k=1 ns jk!

φ1
1

D(µ1τ1)

r∏
j=1

pµ1 jτ1−1
s j + (1 − φ1)(r − 1)!


×

φ2
1

D(µ2τ2)

c∏
k=1

pµ2kτ2−1
sk + (1 − φ2)(c − 1)!

 (r − 1)!
(τ1 + 1)2

(c − 1)!
(τ2 + 1)2 ,

where Ω = (ps, qs,µ1, τ1,µ2, τ2, φ1, φ2) and the marginal likelihood is

f (ns) =

"
ns!∏r

j=1
∏c

k=1 ns jk!
(r − 1)!(c − 1)!

(τ1 + 1)2(τ2 + 1)2

3
4

D
(
µ1τ1 + n(1)

s

)
D(µ1τ1)

D
(
n(1)

s + 1
) +

1
4

(r − 1)!

×

3
4

D
(
µ2τ2 + n(2)

s

)
D(µ2τ2)

1
4

(c − 1)!D
(
n(2)

s + 1
) dµdτ,
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where Ω = (ps, qs,µ1, τ1,µ2, τ2, φ1, φ2), µ = (µ1,µ2), µ1 = (µ1, . . . , µr), µ2 = (µ1, . . . , µc), and
τ = (τ1, τ2). Consequently, we calculate the pooled Bayes factor based on the general model versus
the independence model for restricted pooling in the s’th area. A pooled Bayes factor is

PBFs =
(I − 1)! f1(ns)

(r − 1)!(c − 1)! f2(ns) f3(ns)
,

where

f1(ns) =

"
1

(τ + 1)2

{
3
4

D(µτ + ns)
D(µτ)

+
1
4

(I − 1)!D(ns + 1)
}

dµdτ,

f2(ns) =

"
1

(1 + τ1)2

3
4

D
(
µ1τ1 + n(1)

s

)
D(µ1τ1)

+
1
4

(r − 1)!D
(
n(1)

s + 1
) dµ1dτ1,

f3(ns) =

"
1

(1 + τ2)2

3
4

D
(
µ2τ2 + n(2)

s

)
D(µ2τ2)

+
1
4

(c − 1)!D
(
n(2)

s + 1
) dµ2dτ2.

3. Hierarchical Bayesian nonparameteric models
3.1. General models
In the sth area, let nsi, i = 1, . . . , I(= rc) be the cell counts with corresponding probabilities πsi. For
the pooled Bayes factor, the basic model is the same as parametric models. The basic model for the
nonparametric version is also

ns|πs
ind
∼ Multi(ns,πs), s = 1, . . . , S ,

where ns = (ns1, . . . , nsI) and πs = (πs1, . . . , πsI), and
∑I

i=1 nsi. In the nonparametric version for
restricted pooling, we assume that

πs|G
iid
∼ G,

G ∼ DP(α,G0), G0 ≡ φDirichlet(µτ) + (1 − φ)Dirichlet(1),

π(µ, τ) =
(I − 1)!
(1 + τ)2 ,

π(α) =
1

(1 + α)2 ,

φ ∼ Uniform
(

1
2
, 1

)
,

where 1 is the I × 1 vector with a value of 1. In the Dirichlet process prior, the base distribution G0
is composed of mixed Dirichlet distributions with parameters µτ and 1. Antoniak (1974). DP(α,G0)
means Dirhcihlet process prior, where G0 is base distribution, which can be specified as an distribution
of unknown parameters defined in the space of the distribution. In this paper, this base distribution is
specified as Dirichlet distribution, where α is a concentration parameter that determines the density
of the distribution, i.e., the degree of parameter similarity, and the larger the value, the greater the
heterogeneity of the distribution. In the non-parametric model, parameters of similar regions have the
same subscript, and different characteristics have different subscripts, but if you have parameters that
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are somewhat similar to other ranges, you can have more similarity in estimates, and vice versa. One
of the base distributions is non-informative and reflects the uncertainty in the model. We also apply a
slice-efficient sampler to fit the Dirichlet process prior. Kalli et al. (2011). That is, the joint posterior
distribution is

P(n, d,u|ν,π) =

S∏
s=1

I(us<ξds )
wds

ξds

ns!
I∏

i=1

πnsi
dsi

nsi!

 ,
where w1 = ν1,wl = (1− ν1) · · · (1− νl−1)νl, νl ∼ B(1, α), l = 1, . . . , L, ξl = (1− κ)κl−1. Then the joint
posterior density is

π(π, ν, d,u,µ, τ, α, φ|n) =

S∏
s=1

I(us<ξds )
wds

ξds

ns!
I∏

i=1

πnsi
dsi

nsi!

 L∏
l=1

{(
φ

1
D(µτ)

I∏
i=1

π
µiτ−1
li + (1 − φ)

1
D(1)

)
×

1
B(1, α)

(1 − νl)α−1
}

(I − 1)!
(1 + τ)2

1
(1 + α)2 .

The posterior density is similar forms to the nonparametric model for adaptive pooling. However, the
parameters are estimated from the data, excluding the uncertain part. Then, the marginal likelihood
function is

f (n) =

∏S
s=1 ns!∏S

s=1
∏I

i=1 nsi!

$
(I − 1)!
(1 + τ)2

1
(1 + α)2

L∏
l=1

{ 3
4

D(µτ +
∑S

s=1 I(ds=l)ns)
D(µτ)

+
1
4

D(
∑S

s=1 I(ds=l)ns + 1)
D(1)

 B
(
1 +

∑S
s=1 I(ds=l), α +

∑S
s=1 I(ds>l)

)
B(1, α)

}
dαdτdµ,

where Ω = (π, ν, d,u,µ, τ, α, φ).

3.2. Independence models

In the nonparametric version, the basic model is also constructed on the same structure as the para-
metric model of independence. We assume that the cell counts ns jk, j = 1, . . . , r, k = 1, . . . , c, are
the responses for the jth and the kth column in the sth area, s = 1, . . . , S with corresponding cell
probabilities πs jk = ps jqsk, where ps j =

∑c
k=1 πs jk and qsk =

∑r
j=1 πs jk. For our pooled Bayes factor of

independence, we propose the following:

ns|ps, qs
ind
∼ Multi

(
ns, vec

(
p′s, q

′
s
))
, s = 1, . . . , S ,

where ns = (ns11, . . . , ns1c, . . . , nsr1, . . . , nsrc), ns =
∑r

j=1
∑c

k=1 ns jk, ps = (ps1, . . . , psr),q = (qs1, . . . ,
qsc),

∑r
j−1 ps j = 1,

∑c
k=1 qsk = 1. We construct the nonparametric version of the restricted pooling

model, which is built using the mixture Dirichlet distribution to reflect the uncertainty. Our nonpara-
metric model for the restricted pooling of independence is

ps|G1
iid
∼ G1, G1 ∼ DP(α1,G01), G01 ≡ φ1Dirichlet(µ1, τ1) + (1 − φ1)Dirichlet(1p),

qs|G2
iid
∼ G2, G2 ∼ DP(α1,G02), G02 ≡ φ2Dirichlet(µ2, τ2) + (1 − φ2)Dirichlet(1q),

π(µ1, τ1) =
(r − 1)!

(τ1 + 1)2 , π(α1) =
1

(α1 + 1)2 , π(µ2, τ2) =
(c − 1)!
(τ2 + 1)2 , π(α2) =

1
(α2 + 1)2 ,

φ1 ∼ Uniform
(

1
2
, 1

)
, φ2 ∼ Uniform

(
1
2
, 1

)
, τ1, τ2 > 0, α1, α2 > 0,



A pooled Bayes test of independence using restricted pooling 553

where 1p is r×1 vector with a component equal to 1, 1q is c×1 vector, and the Dirichlet processes are
composed of the base distributions with a mixture Dirichlet distribution. The uncertainty is reflected
in the Dirichlet distribution with parameter vectors 1p and 1q. Then, the joint posterior density based
on the above model structure is

π(Ω|n) =

S∏
s=1


I(u1s<ξd1s )

wd1s

ξd1s

I(u2s<ξd2s )
wd2s

ξd2s

ns!
r∏

j=1

c∏
k=1

(pd1s jqd2sk)ns jk

ns jk!




×

L1∏
l1=1


φ1

1
D(µ1τ1)

r∏
j=1

pµ1 jτ1

1 j + (1 − φ1)(r − 1)!

 1
B(1, α1)

(1 − ν1l)α1−1


×

L2∏
l2=1


φ2

1
D(µ2τ2)

c∏
k=1

qµ2kτ2
2k + (1 − φ2)(c − 1)!

 1
B(1, α2)

(1 − ν2l)α2−1


×

(c − 1)!
(τ2 + 1)2

1
(α2 + 1)2

(r − 1)!
(τ1 + 1)2

1
(α1 + 1)2 ,

where Ω = (p, q, ν1, ν2, d1, d2,u1,u2,µ1, τ1, α1,µ2, τ2, α2, φ1, φ2), L1 is largest number of cluster for
parameters ps for s = 1, . . . , S and L2 is largest number of cluster for parameters qs for s = 1, . . . , S ,
and we assume that the structure of cluster between ps and qs is independent. Our marginal likelihood
of independence is

f (n) =

S∑
s=1

L1∑
d1s=1

L2∑
d2s=1

 ∏S
s=1 ns!∏S

s=1
∏I

i=1 nsi!

 ∫ (r − 1)!
(τ1 + 1)2

1
(α1 + 1)2

(c − 1)!
(τ2 + 1)2

1
(α2 + 1)2

×

L1∏
l1=1


3

4

D
(
µ1τ1 +

∑S
s=1 I(d1s=l1)n(1)

s

)
D(µ1τ1)

+
1
4

(r − 1)!D

 S∑
s=1

I(d1s=l1)n(1)
s + 1





×

L2∏
l2=1


3

4

D
(
µ2τ2 +

∑S
s=1 I(d2s=l2)n(2)

s

)
D(µ2τ2)

+
1
4

(c − 1)!D

 S∑
s=1

I(d2s=l2)n(2)
s + 1





×

L1∏
l1=1

B
(
1 +

∑S
s=1 I(d1s=l1), α1 +

∑S
s=1 I(d1s>l1)

)
B(1, α1)

×

L2∏
l2=1

B
(
1 +

∑S
s=1 I(d2s=l2), α2 +

∑S
s=1 I(d2s>l2)

)
B(1, α2)

dΩ′,

where Ω′ = (d1, d2,µ1, τ1, α1,µ2, τ2, α2) and the pooled Bayes factor of the general model versus the
independence model for the s’th area is

PBFs =
(I − 1)! f1(n)

(r − 1)!(c − 1)! f2(n)
,

where

f1(n) =

∏S
s=1 ns!∏S

s=1
∏I

i=1 nsi!

∫
(I − 1)!
(1 + τ)2

1
(1 + α)2

L∏
l=1

{(
3
4

D
(
µτ +

∑S
s=1 I(ds=l)ns

)
D(µτ)

×
1
4

D
(∑S

s=1 I(ds=l)ns + 1
)

D(1)

)
B
(
1 +

∑S
s=1 I(ds=l), α +

∑S
s=1 I(ds>l)

)
B(1, α)

}
dΩ
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Table 1: BMI and BMD contingency tables from the NHANES III

BMI

Area N Underweight Optimal Overweight Obese
BMD BMD BMD BMD

N OPE OP N OPE OP N OPE OP N OPE OP
1 78 5 0 0 11 8 4 12 9 1 27 1 0
2 65 1 2 1 15 5 4 15 1 1 18 2 0
3 73 2 3 2 17 7 3 18 6 1 10 3 1
4 71 5 5 0 15 6 3 15 6 2 13 1 0
5 66 5 1 2 16 11 3 4 7 4 8 5 0
6 93 2 1 1 18 6 3 17 9 1 32 3 0
7 106 2 2 1 15 7 4 35 7 2 26 5 0
8 161 4 3 1 39 15 3 29 15 3 38 11 0
9 266 12 10 2 45 16 4 59 19 5 80 10 4

10 90 7 2 1 18 17 4 11 12 0 10 8 0
11 81 4 1 1 15 11 2 22 4 1 18 2 0
12 408 11 7 2 79 32 8 108 36 6 98 20 1
13 62 1 1 2 16 6 1 5 6 0 20 3 1
14 104 7 0 1 22 3 0 28 6 3 31 3 0
15 153 5 6 4 34 21 8 33 9 2 27 4 0
16 202 10 4 2 40 17 7 43 15 0 56 8 0
17 59 1 1 1 19 8 2 5 4 1 15 2 0
18 95 2 1 1 24 8 1 24 6 1 23 4 0
19 73 2 6 2 10 9 3 12 5 3 16 5 0
20 79 2 2 2 14 9 2 15 7 1 17 7 1
21 65 0 0 1 16 5 8 8 7 1 16 3 0
22 59 1 2 2 6 8 4 18 4 0 13 1 0
23 116 1 4 3 29 8 5 20 12 3 24 6 1
24 65 1 3 1 13 6 3 11 2 1 22 1 1
25 54 2 2 0 13 7 1 9 1 1 13 4 1
26 59 5 5 0 18 3 2 11 6 0 5 4 0
27 94 4 2 0 9 7 2 23 11 2 27 7 0
28 93 4 3 0 23 3 2 14 5 1 35 3 0
29 76 1 1 2 18 6 5 17 6 4 13 3 0
30 115 2 0 0 24 7 4 31 3 2 39 3 0
31 94 6 2 3 26 7 1 21 4 0 24 0 0

Note. N = Normal, OPE = Osteopenia, OP = Osteoporosis.

and

f2(n) =

S∑
s=1

L1∑
d1s=1

L2∑
d2s=1

 ∏S
s=1 ns!∏S

s=1
∏I

i=1 nsi!

 ∫ (r − 1)!
(τ1 + 1)2

1
(α1 + 1)2

(c − 1)!
(τ2 + 1)2

1
(α2 + 1)2

×

L1∏
l1=1


3

4

D
(
µ1τ1 +

∑S
s=1 I(d1s=l1)n(1)

s

)
D

(
µ1τ1

) +
1
4

(r − 1)!D

 S∑
s=1

I(d1s=l1)n(1)
s + 1





×

L2∏
l2=1


3

4

D
(
µ2τ2 +
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s=1 I(d2s=l2)n(2)

s

)
D

(
µ2τ2

) +
1
4

(c − 1)!D

 S∑
s=1

I(d2s=l2)n(2)
s + 1





×

L1∏
l1=1

B
(
1+

∑S
s=1 I(d1s=l1), α1+

∑S
s=1 I(d1s>l1)

)
B(1, α1)

×

L2∏
l2=1

B
(
1+

∑S
s=1 I(d2s=l2), α2+

∑S
s=1 I(d2s>l2)

)
B(1, α2)

dΩ′,

where Ω = (α, τ,µ) and Ω′ = (d1, d2,µ1, τ1, α1,µ2, τ2, α2).
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Table 2: Posterior summaries of pooling parameter (µ, τ) in parametric model

PM PSD NSE 95%CI
1. General model

µ1 0.078 0.046 0.001 (0.013, 0.193)
µ2 0.065 0.034 0.000 (0.012, 0.143)
µ3 0.049 0.028 0.000 (0.008, 0.114)
µ4 0.147 0.075 0.002 (0.024, 0.309)
µ5 0.094 0.051 0.001 (0.02, 0.214)
µ6 0.066 0.041 0.001 (0.013, 0.174)
µ7 0.124 0.062 0.002 (0.023, 0.259)
µ8 0.086 0.049 0.001 (0.017, 0.204)
µ9 0.049 0.034 0.001 (0.008, 0.138)
µ10 0.138 0.069 0.002 (0.026, 0.287)
µ11 0.074 0.045 0.001 (0.017, 0.188)
µ12 0.029 0.036 0.000 (0.002, 0.141)
τ 21.062 20.994 0.140 (0.354, 71.639)

2. Independence model
2.1. Row table

µ1 0.620 0.086 0.001 (0.422, 0.743)
µ2 0.262 0.061 0.001 (0.155, 0.388)
µ3 0.118 0.063 0.001 (0.044, 0.262)
τ 30.012 38.395 0.273 (2.059, 146.248)

2.2. Column table
µ1 0.103 0.058 0.000 (0.028, 0.249)
µ2 0.326 0.066 0.001 (0.180, 0.442)
µ3 0.285 0.061 0.001 (0.162, 0.403)
µ4 0.287 0.076 0.000 (0.145, 0.434)
τ 72.171 66.117 0.741 (1.359, 254.275)

Note. PM = Posterior mean, PSD = Posterior standard deviation, NSE = Numerical standard error(are obtained from the
batch means method).

4. Data analysis

As medical technology improves, the purpose of clinical care is not merely survival but to bring a
change in terms of improving the quality of life. Therefore, determining the association among dif-
ferent clinical factors and predicting diseases based on other clinical factors have become the most
important issues in the clinical field. As part of these changes, the National Center for Health Statistics
has implemented a survey program, the NHANES, since the early 1960s in the U.S. The NHANES is
a major survey program to measure and assess the health and nutritional status of people. It combines
physical examination and interview data collected by mobile examination centers in the U.S. As in-
dicated in Table 1, the BMI and BMD data are also a part of this survey program, and the data were
collected between 1994 and 1998. We apply our method to the two-way contingency tables with the
BMI and BMD category data from NHANES III to compare and assess our test of independence with
the pooled Bayes factor.

Although NHANES III is a large-scale survey, the cell frequency of the contingency tables for
identifying the characteristics of small regions was often less than 5. In general, it cannot be used for
the independence test using the chi-square test as in the case above, and the limitation is that the reli-
ability of the test results is very low. On the other hand, in the case of the pooled Bayes factor, which
has a structure that can provide additional information on cells below the value of 5 by borrowing
information from surrounding regions, it is modeled by directly reflecting the characteristics of the
data and a reliable test can be performed through this. A summary of the estimated pooling parameter
is presented in Table 2 and 3. The estimated summaries of µ and τ, which are pooling parameters es-
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Table 3: Posterior summaries of pooling parameter (µ, τ) in nonparametric model

PM PSD NSE 95%CI
1. General model

µ1 0.055 0.012 0.0004 (0.036, 0.081)
µ2 0.042 0.010 0.0004 (0.025, 0.062)
µ3 0.028 0.007 0.0005 (0.015, 0.044)
µ4 0.171 0.017 0.0024 (0.138, 0.203)
µ5 0.102 0.015 0.0014 (0.074, 0.132)
µ6 0.052 0.011 0.0007 (0.031, 0.074)
µ7 0.167 0.016 0.0011 (0.137, 0.200)
µ8 0.092 0.013 0.0008 (0.067, 0.118)
µ9 0.032 0.009 0.0003 (0.016, 0.052)
µ10 0.181 0.016 0.0015 (0.147, 0.209)
µ11 0.063 0.011 0.0003 (0.043, 0.084)
µ12 0.016 0.005 0.0002 (0.008, 0.026)
τ 158.788 12.363 0.1750 (124.2, 170.2)

2. Independence model
2.1. Row table

µ1 0.619 0.023 0.0020 (0.575, 0.663)
µ2 0.268 0.020 0.0006 (0.232, 0.309)
µ3 0.113 0.016 0.0016 (0.082, 0.143)
τ 139.029 27.114 2.6115 (68.1, 169.5)

2.2. Column table
µ1 0.063 0.010 0.0004 (0.045, 0.084)
µ2 0.308 0.018 0.0011 (0.273, 0.345)
µ3 0.280 0.017 0.0008 (0.248, 0.313)
µ4 0.350 0.020 0.0009 (0.311, 0.390)
τ 159.462 10.916 0.3579 (129.7, 170.1)

Note. PM = Posterior mean, PSD = Posterior standard deviation, NSE = Numerical standard error(are obtained from the
batch means method).

timated in the general and the independence model, show that the posterior standard deviation is very
low with a maximum of 0.086. In particular, the stability of the chain was confirmed, given that the
numerical standard error calculated through the batch means method is estimated to be below 0.0002
in most parameters.

In Table 4, we can compare the chi-square test results by region and the results of the pooled
Bayes factor (PBF) calculated through the parametric and nonparametric Bayesian model. If the
2∗ log(PBF) is in (0, 1) or the p-value is in (0.05, 0.10), we obtain borderline evidence against the null
hypothesis. If the log(PBF) is in (1, 3) or the p-value is in (0.025, 0.05), we obtain positive evidence
against the null hypothesis. If the log(PBF) is in (3, 5) or the p-value is in (0.01, 0.025), we derive
strong evidence against the null hypothesis. If the log(BF) is greater than 5 or the p-value is in (0.000,
0.010), we derive very strong evidence against the null hypothesis (refer to Kass and Raftery, 1995).
Although there is no evidence that the relationship between regional BMI and BMD differs clinically,
the chi-square test results indicate contradictory results by region. Although the pooled Bayes factor
test results show differences in intensity by region, there was in general an association between BMI
and BMD. When the chi-square test concludes that the two factors between regions are independent,
the frequency of 5 or less is widely distributed, and it is difficult to confirm the reliability of the test.
However, Jo et al. (2021) found consistent statistical test results when tests were conducted using the
pooled Bayes factor calculated with the restricted pooling in which a pooling effect between regions
was confirmed. In particular, areas 1, 15, 19, and 22 had uncertainties classified by φ. While the
test results indicating the association between BMI and BMD are similar, the intensity of the test is
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Table 4: Comparisons of the Pearson’s Chi-Squared test and pooled Bayes tests

Area n Chi-Squared log(PBFp) log(PBFnp)
1 78 0.001 2.966 3.082£

2 65 0.055$ 2.648 2.897
3 73 0.396$ 2.377 2.842
4 71 0.178$ 2.562 2.898
5 66 0.192$ 2.676 2.949
6 93 0.034 2.618 2.866
7 106 0.080$ 2.526 2.822
8 161 0.387$ 2.115 2.595
9 266 0.022 2.416 2.786
10 90 0.333$ 2.471 2.834
11 81 0.079$ 2.529 2.859
12 408 0.033 2.216 2.648
13 62 0.002 2.716 2.923
14 104 0.239$ 2.245 2.491
15 153 0.002 2.89 3.166£

16 202 0.002 2.764 2.984
17 59 0.191$ 2.549 2.829
18 95 0.216$ 2.130 2.578
19 73 0.080$ 2.748 3.046£

20 79 0.287$ 2.282 2.769
21 65 0.006 2.825 2.990
22 59 0.001 3.030£ 3.184£

23 116 0.013 2.657 2.981
24 65 0.030 2.702 2.953
25 54 0.706$ 2.272 2.667
26 59 0.208$ 2.579 2.838
27 94 0.325$ 2.368 2.700
28 93 0.092$ 2.468 2.694
29 76 0.257$ 2.495 2.857
30 115 0.131$ 2.354 2.532
31 94 0.001 2.759 2.936

$ Areas with independence of BMI and BMD; £ Areas with more strong dependence of BMI an BMD.

more robust, which implies that the BMI and BMD association of the regions is higher than in other
regions.

5. Concluding remarks

When the number of data is small in the small-region estimation, we present the calculated results
by theoretically developing the pooled Bayes factor based on the restricted pooling model, a model
proposed by Jo et al. (2021) that borrows information from similar nearby areas and performs a
pooled parameter estimation, and proposed the Bayes test that performs a statistical test using the
calculated PBF. The performance of parameter estimation was found to have an increased precision by
borrowing nearby information, reducing the number of parameters and increasing the number of data
for parameter estimation, as proposed by Jo et al. (2021). In this case, the pooling of excess data may
excessively reduce fluctuations caused by the local effect and cause an over-shrinkage problem in the
parameter estimation. To prevent this, a restricted pooling model was proposed that limits regions with
different characteristics, and it was confirmed that the performance of the proposed model was better
than the pooling of all existing data. Using the restricted pooling model, we proposed the Bayes test,
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which borrows information from similar regions and performs the independence test and were able
to produce consistent test results for all regions, unlike the existing chi-square test. In the restricted
pooling model, compared to the parametric model, which indirectly pools local information through
the same hyper-parameter, in case of a nonparametric model that directly pools using parameters
with the same subscript in a similar area. Because the test statistics are calculated using only the
separate regional information in specific areas with different characteristics, the smoothing effect of
the parameter is reduced compared to the parametric model. Therefore, the regional specific test
results can be shown, and even in the data analysis it can be seen that there are many areas with
different results in the nonparametric model. In other words, in the case of a parametric model,
since the estimation of hyper-parametric may include indirect information from other regions even in
different regional characteristics, similar test statistics can be calculated, and study over the possibility
of over-shrinkage should be considered. In particular, given that the number of clusters calculated
through the nonparametric Bayesian model was 1 to 3, the distribution of BMD and BMI did not differ
significantly by region. Since information about regions with specific characteristics is classified as
regions with uncertainty through the parameter φ, it was also possible to confirm regions with different
test results’ intensity.
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