• Title/Summary/Keyword: Bayesian information

Search Result 1,230, Processing Time 0.025 seconds

A Comparative Study of the Effects of Gibbs Smoothing Priors in Bayesian Tomographic Reconstruction (Bayesian Tomographic 재구성에 있어서 Gibbs Smoothing Priors의 효과에 대한 비교연구)

  • Lee, S.J.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1997 no.05
    • /
    • pp.279-282
    • /
    • 1997
  • Bayesian reconstruction methods for emission computed tomography have been a topic of interest in recent years, partly because they allow for the introduction of prior information into the reconstruction problem. Early formulations incorporated priors that imposed simple spatial smoothness constraints on the underlying object using Gibbs priors in the form of four-nearest or eight-nearest neighbors. While these types of priors, known as "membrane" priors, are useful as stabilizers in otherwise unstable ML-EM reconstructions, more sophisticated prior models are needed to model underlying source distributions more accurately. In this work, we investigate whether the "thin plate" model has advantages over the simple Gibbs smoothing priors mentioned above. To test and compare quantitative performance of the reconstruction algorithms, we use Monte Carlo noise trials and calculate bias and variance images of reconstruction estimates. The conclusion is that the thin plate prior outperforms the membrane prior in terms of bias and variance.

  • PDF

A Bayesian Approach to Detecting Outliers Using Variance-Inflation Model

  • Lee, Sangjeen;Chung, Younshik
    • Communications for Statistical Applications and Methods
    • /
    • v.8 no.3
    • /
    • pp.805-814
    • /
    • 2001
  • The problem of 'outliers', observations which look suspicious in some way, has long been one of the most concern in the statistical structure to experimenters and data analysts. We propose a model for outliers problem and also analyze it in linear regression model using a Bayesian approach with the variance-inflation model. We will use Geweke's(1996) ideas which is based on the data augmentation method for detecting outliers in linear regression model. The advantage of the proposed method is to find a subset of data which is most suspicious in the given model by the posterior probability The sampling based approach can be used to allow the complicated Bayesian computation. Finally, our proposed methodology is applied to a simulated and a real data.

  • PDF

Bayesian Approach for Determining the Order p in Autoregressive Models

  • Kim, Chansoo;Chung, Younshik
    • Communications for Statistical Applications and Methods
    • /
    • v.8 no.3
    • /
    • pp.777-786
    • /
    • 2001
  • The autoregressive models have been used to describe a wade variety of time series. Then the problem of determining the order in the times series model is very important in data analysis. We consider the Bayesian approach for finding the order of autoregressive(AR) error models using the latent variable which is motivated by Tanner and Wong(1987). The latent variables are combined with the coefficient parameters and the sequential steps are proposed to set up the prior of the latent variables. Markov chain Monte Carlo method(Gibbs sampler and Metropolis-Hasting algorithm) is used in order to overcome the difficulties of Bayesian computations. Three examples including AR(3) error model are presented to illustrate our proposed methodology.

  • PDF

LSG;(Local Surface Group); A Generalized Local Feature Structure for Model-Based 3D Object Recognition (LSG:모델 기반 3차원 물체 인식을 위한 정형화된 국부적인 특징 구조)

  • Lee, Jun-Ho
    • The KIPS Transactions:PartB
    • /
    • v.8B no.5
    • /
    • pp.573-578
    • /
    • 2001
  • This research proposes a generalized local feature structure named "LSG(Local Surface Group) for model-based 3D object recognition". An LSG consists of a surface and its immediately adjacent surface that are simultaneously visible for a given viewpoint. That is, LSG is not a simple feature but a viewpoint-dependent feature structure that contains several attributes such as surface type. color, area, radius, and simultaneously adjacent surface. In addition, we have developed a new method based on Bayesian theory that computes a measure of how distinct an LSG is compared to other LSGs for the purpose of object recognition. We have experimented the proposed methods on an object databaed composed of twenty 3d object. The experimental results show that LSG and the Bayesian computing method can be successfully employed to achieve rapid 3D object recognition.

  • PDF

Three-dimensional object recognition using efficient indexing:Part I-bayesian indexing (효율적인 인덱싱 기법을 이용한 3차원 물체 인식:Part I-Bayesian 인덱싱)

  • 이준호
    • Journal of the Korean Institute of Telematics and Electronics C
    • /
    • v.34C no.10
    • /
    • pp.67-75
    • /
    • 1997
  • A design for a system to perform rapid recognition of three dimensional objects is presented, focusing on efficient indexing. In order to retrieve the best matched models without exploring all possible object matches, we have employed a bayesian framework. A decision-theoretic measure of the discriminatory power of a feature for a model object is defined in terms of posterior probability. Detectability of a featrue defined as a function of the feature itselt, viewpoint, sensor charcteristics, nd the feature detection algorithm(s) is also considered in the computation of discribminatory power. In order to speed up the indexing or selection of correct objects, we generate and verify the object hypotheses for rfeatures detected in a scene in the order of the discriminatory power of these features for model objects.

  • PDF

A Strategy Bayesian Model to Predict Profit of Construction Projects

  • Park, Sung-Hyuk;Kim, Sang-Yong
    • Architectural research
    • /
    • v.13 no.3
    • /
    • pp.49-56
    • /
    • 2011
  • Competitive bidding in construction is concerned with contractors making strategic decisions in respect of determination of bid price if contractors opt to bid. This study presents a strategy model for deciding optimum tender price with reflecting appropriate profit in competitive bidding using Bayesian regression analysis (BRA). The purpose of the developed model is to help contractors to secure suitable profitability by predicting the actual profit based on key variables. They may affect construction cost at bidding phase, ultimately which help contractors to secure high quality output. The model was tested empirically by application to a bidding dataset collected from a large South Korea contractor. BRA allows contractors to estimate more accurate actual profit by reflecting not only objective information but also subjective experiences and judgments. Consequently, the model can contribute to improvement of decision-making process for setting an optimum tender price.

Bayesian Learning through Weight of Listener's Prefered Music Site for Music Recommender System

  • Cho, Young Sung;Moon, Song Chul
    • Journal of Information Technology Applications and Management
    • /
    • v.23 no.1
    • /
    • pp.33-43
    • /
    • 2016
  • Along with the spread of digital music and recent growth in the digital music industry, the demands for music recommender are increasing. These days, listeners have increasingly preferred to digital real-time streamlining and downloading to listen to music because it is convenient and affordable for the listeners to do that. We use Bayesian learning through weight of listener's prefered music site such as Melon, Billboard, Bugs Music, Soribada, and Gini. We reflect most popular current songs across all genres and styles for music recommender system using user profile. It is necessary for us to make the task of preprocessing of clustering the preference with weight of listener's preferred music site with popular music charts. We evaluated the proposed system on the data set of music sites to measure its performance. We reported some of the experimental result, which is better performance than the previous system.

A Bayesian Decision Model for a Deteriorating Repairable System (열화시스템의 수리를 위한 베이지안 의사결정 모형의 개발)

  • Kim, Taeksang;Ahn, Suneung
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.32 no.2
    • /
    • pp.141-152
    • /
    • 2006
  • This paper presents the development of a decision model to examine the optimal repair action for a deteriorating system. In order to make a reasonable decision, it is necessary to perform an analysis of the uncertainties embedded in deterioration and to evaluate the repair actions based on the expected future cost. Focusing on the power law failure model, the uncertainties related to deterioration are analyzed based on the Bayesian approach. In addition, we develop a decision model for the optimal repair action by applying a repair cost function. A case study is given to illustrate a decision-making process by analyzing the loss incurred due to deterioration.

Bayesian Analysis of Binary Non-homogeneous Markov Chain with Two Different Time Dependent Structures

  • Sung, Min-Je
    • Management Science and Financial Engineering
    • /
    • v.12 no.2
    • /
    • pp.19-35
    • /
    • 2006
  • We use the hierarchical Bayesian approach to describe the transition probabilities of a binary nonhomogeneous Markov chain. The Markov chain is used for describing the transition behavior of emotionally disturbed children in a treatment program. The effects of covariates on transition probabilities are assessed using a logit link function. To describe the time evolution of transition probabilities, we consider two modeling strategies. The first strategy is based on the concept of exchangeabiligy, whereas the second one is based on a first order Markov property. The deviance information criterion (DIC) measure is used to compare models with two different time dependent structures. The inferences are made using the Markov chain Monte Carlo technique. The developed methodology is applied to some real data.

Flame Verification using Motion Orientation and Temporal Persistency

  • Hwang, Hyun-Jae;Ko, Byoung-Chul;Nam, Jae-Yeal
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2009.01a
    • /
    • pp.282-285
    • /
    • 2009
  • This paper proposes a flame verification algorithm using motion and spatial persistency. Most previous vision-based methods using color information and temporal variations of pixels produce frequent false alarms due to the use of many heuristic features. To solve these problems, we used a Bayesian Networks. In addition, since the shape of flame changes upwards irregularly due to the airflow caused by wind or burning material, we distinct real flame from moving objects by checking the motion orientation and temporal persistency of flame regions to remove the misclassification. As a result, the use of two verification steps and a Bayesian inference improved the detection performance and reduced the missing rate.

  • PDF