Journal of Korean Society of Industrial and Systems Engineering
/
v.7
no.10
/
pp.47-51
/
1984
In many forecasting problem, there is little or no useful historical information available at the time the initial forecast is required, The propose of this paper is study on Bayesian Method in forecasting. I : Introduction. II : Bayesian estimation. III : Constant Model. IV : General time series Models. V : Conclusion. The Bayesian procedure are then used to revise parameter estimates when time series information is available, in this paper we give a general description of the bayesian approach and demonstrate the methodology with several specific cases.
Kim, Yongdai;Kim, Woosung;Ohn, Ilsang;Kim, Young-Oh
Communications for Statistical Applications and Methods
/
v.24
no.1
/
pp.67-80
/
2017
Over the last few decades, ensemble forecasts based on global climate models have become an important part of climate forecast due to the ability to reduce uncertainty in prediction. Moreover in ensemble forecast, assessing the prediction uncertainty is as important as estimating the optimal weights, and this is achieved through a probabilistic forecast which is based on the predictive distribution of future climate. The Bayesian model averaging has received much attention as a tool of probabilistic forecasting due to its simplicity and superior prediction. In this paper, we propose a new Bayesian model averaging method for probabilistic ensemble forecasting. The proposed method combines a deterministic ensemble forecast based on a multivariate regression approach with Bayesian model averaging. We demonstrate that the proposed method is better in prediction than the standard Bayesian model averaging approach by analyzing monthly average precipitations and temperatures for ten cities in Korea.
Communications for Statistical Applications and Methods
/
v.31
no.3
/
pp.323-336
/
2024
The accurate forecasting of insurance claims is a critical component for insurers' risk management decisions. Hierarchical Bayesian parametric (BP) models can be used for health insurance claims forecasting, but they are unsatisfactory to describe the claims distribution. Therefore, Bayesian nonparametric (BNP) models can be a more suitable alternative to deal with the complex characteristics of the health insurance claims distribution, including heavy tails, skewness, and multimodality. In this study, we apply both a BP model and a BNP model to predict group health claims using simulated and real-world data for a private life insurer in Indonesia. The findings show that the BNP model outperforms the BP model in terms of claims prediction accuracy. Furthermore, our analysis highlights the flexibility and robustness of BNP models in handling diverse data structures in health insurance claims.
Baltic Dry Index (BDI) is difficult to forecast because of the high volatility and complexity. To improve the BDI forecasting ability, this study apply Bayesian variable selection method with a large number of predictors. Our estimation results based on the BDI and all predictors from January 2000 to September 2021 indicate that the out-of-sample prediction ability of the ADL model with the variable selection is superior to that of the AR model in terms of point and density forecasting. We also find that critical predictors for the BDI change over forecasts horizon. The lagged BDI are being selected as an key predictor at all forecasts horizon, but commodity price, the clarksea index, and interest rates have additional information to predict BDI at mid-term horizon. This implies that time variations of predictors should be considered to predict the BDI.
Journal of Institute of Control, Robotics and Systems
/
v.19
no.10
/
pp.901-906
/
2013
Chaff is a kind of matter spreading atmosphere with the purpose of preventing aircraft from detecting by radar. The chaff is commonly composed of small aluminum pieces, metallized glass fiber, or other lightweight strips which consists of reflecting materials. The chaff usually appears on the radar images as narrow bands shape of highly reflective echoes. And the chaff echo has similar characteristics to precipitation echo, and it interrupts weather forecasting process and makes forecasting accuracy low. In this paper, the chaff echo recognizing and removing method is suggested using Bayesian network. After converting coordinates from spherical to Cartesian in UF (Universal Format) radar data file, the characteristics of echoes are extracted by spatial and temporal clustering. And using the data, as a result of spatial and temporal clustering, a classification process for analyzing is performed. Finally, the inference system using Bayesian network is applied. As a result of experiments with actual radar data in real chaff echo appearing case, it is confirmed that Bayesian network can distinguish between chaff echo and non-chaff echo.
High-speed rail (HSR) has been in operation and development in many countries worldwide. The explosive growth of HSR has posed great challenges for operation safety and ride comfort. Among various technological demands on high-speed trains, vibration is an inevitable problem caused by rail/wheel imperfections, vehicle dynamics, and aerodynamic instability. Ride comfort is a key factor in evaluating the operational performance of high-speed trains. In this study, online monitoring data have been acquired from an in-service high-speed train for condition assessment. The measured dynamic response signals at the floor level of a train cabin are processed by the Sperling operator, in which the ride comfort index sequence is used to identify the train's operation condition. In addition, a novel technique that incorporates salient features of Bayesian inference and time series analysis is proposed for outlier detection and change detection. The Bayesian forecasting approach enables the prediction of conditional probabilities. By integrating the Bayesian forecasting approach with time series analysis, one-step forecasting probability density functions (PDFs) can be obtained before proceeding to the next observation. The change detection is conducted by comparing the current model and the alternative model (whose mean value is shifted by a prescribed offset) to determine which one can well fit the actual observation. When the comparison results indicate that the alternative model performs better, then a potential change is detected. If the current observation is a potential outlier or change, Bayes factor and cumulative Bayes factor are derived for further identification. A significant change, if identified, implies that there is a great alteration in the train operation performance due to defects. In this study, two illustrative cases are provided to demonstrate the performance of the proposed method for condition assessment of high-speed trains.
Proceedings of the Korea Water Resources Association Conference
/
2022.05a
/
pp.134-134
/
2022
Streamflow forecasting plays a crucial role in water resource control, especially in highly urbanized areas that are very vulnerable to flooding during heavy rainfall event. In addition to providing the accurate prediction, the evaluation of effects and importance of the input predictors can contribute to water manager. Recently, machine learning techniques have applied their advantages for modeling complex and nonlinear hydrological processes. However, the techniques have not considered properly the importance and uncertainty of the predictor variables. To address these concerns, we applied the GA-BART, that integrates a genetic algorithm (GA) with the Bayesian additive regression tree (BART) model for hourly streamflow forecasting and analyzing input predictors. The Jungrang urban basin was selected as a case study and a database was established based on 39 heavy rainfall events during 2003 and 2020 from the rain gauges and monitoring stations. For the goal of this study, we used a combination of inputs that included the areal rainfall of the subbasins at current time step and previous time steps and water level and streamflow of the stations at time step for multistep-ahead streamflow predictions. An analysis of multiple datasets including different input predictors was performed to define the optimal set for streamflow forecasting. In addition, the GA-BART model could reasonably determine the relative importance of the input variables. The assessment might help water resource managers improve the accuracy of forecasts and early flood warnings in the basin.
Kim, Do-Wan;Park, Jin-Bae;Kim, Juhg-Chan;Joo, Young-Hoon
Proceedings of the KIEE Conference
/
2003.11c
/
pp.588-591
/
2003
This paper presents a new short-term load forecasting system using data mining. Since the electric load has very different pattern according to the day, it definitely gives rise to the forecasting error if only one forecasting model is used. Thus, to resolve this problem, the fuzzy model-based classifier and predictor are proposed for the forecasting of the hourly electric load. The proposed classifier is the multi-input and multi-output fuzzy system of which the consequent part is composed of the Bayesian classifier. The proposed classifier attempts to categorize the input electric load into Monday, Tuesday$\sim$Friday, Saturday, and Sunday electric load, Then, we construct the Takagi-Sugeno (T-S) fuzzy model-based predictor for each class. The parameter identification problem is converted into the generalized eigenvalue problem (GEVP) by formulating the linear matrix inequalities (LMIs). Finally, to show the feasibility of the proposed method, this paper provides the short-term load forecasting example.
Journal of the Korean Operations Research and Management Science Society
/
v.31
no.2
/
pp.157-167
/
2006
Estimating the effects of price increase on a company's sales is important task faced by managers. If consumer has prior information on price increase or expects it, there would be stockpiling and subsequent drops in sales. In addition, consumer can suppress demand in the short run. These factors make the sales dynamic and unstable. In this paper we develop a time series model to evaluate the sales patterns with stockpiling and short-term suppression of demand and also propose a forecasting procedure. For estimation, we use panel data and extend the model to Bayesian hierarchical structure. By borrowing strength across cross-sectional units, this estimation scheme gives more robust and reasonable result than one from the individual estimation. Furthermore, the proposed scheme yields improved predictive power in the forecasting of hold-out sample periods.
Kim, Yong-Tak;Lee, Moon-Seob;Chae, Byung-Soo;Kwon, Hyun-Han
KSCE Journal of Civil and Environmental Engineering Research
/
v.38
no.5
/
pp.655-669
/
2018
In this study, we developed a hybrid forecasting model based on a four-parameter distribution which allows a simultaneous season-ahead forecasting for both seasonal rainfall and sub-daily rainfall in Han-River and Geum-River basins. The proposed model is mainly utilized a set of time-varying predictors and the associated model parameters were estimated within a Bayesian nonstationary rainfall frequency framework. The hybrid forecasting model was validated through an cross-validatory experiment using the recent rainfall events during 2014~2017 in both basins. The seasonal precipitation results showed a good agreement with the observations, which is about 86.3% and 98.9% in Han-River basin and Geum-River basin, respectively. Similarly, for the extreme rainfalls at sub-daily scale, the results showed a good correspondence between the observed and simulated rainfalls with a range of 65.9~99.7%. Therefore, it can be concluded that the proposed model could be used to better consider climate variability at multiple time scales.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.