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Abstract
Over the last few decades, ensemble forecasts based on global climate models have become an important

part of climate forecast due to the ability to reduce uncertainty in prediction. Moreover in ensemble forecast, as-
sessing the prediction uncertainty is as important as estimating the optimal weights, and this is achieved through a
probabilistic forecast which is based on the predictive distribution of future climate. The Bayesian model averag-
ing has received much attention as a tool of probabilistic forecasting due to its simplicity and superior prediction.
In this paper, we propose a new Bayesian model averaging method for probabilistic ensemble forecasting. The
proposed method combines a deterministic ensemble forecast based on a multivariate regression approach with
Bayesian model averaging. We demonstrate that the proposed method is better in prediction than the standard
Bayesian model averaging approach by analyzing monthly average precipitations and temperatures for ten cities
in Korea.

Keywords: Bayesian model averaging, climate forecast, ensemble forecast, global climate mod-
els, mixture models, multivariate regression

1. Introduction

Global climate models (GCMs) are computer models that generate meteorological variables under
various emission scenarios. They have adequately explained past variations of climate and are now
used to predict future climate. One of the important problems in using GCMs for the prediction
or projection of future climate is that large uncertainties exist in GCMs and climate. For example,
climate itself has a large variability that is hardly predictable, and GCMs are sensitive to the change
of emission scenarios (Mearns et al., 2001). Over the last few decades, ensemble forecasts based on
GCMs have become an important part of climate forecast due to the ability to reduce uncertainty in
prediction.

There are various methods to combine different GCMs to forecast future climate. The simplest
approach is to assign the equal weights to GCMs and take the simple average (Lambert and Boer,
2001; Sperber et al., 2004). A better approach would be to assign different weights to GCMs based
on individual capabilities measured on past and future climate data (Dessai et al., 2005; Giorgi and
Mearns, 2002). A more sophisticated approach uses a multivariate linear regression model where pro-
jected values simulated by GCMs are treated as covariates and observed data as responses. Regression
coefficients obtained from the regression model are used to assign weights to GCMs. In general, en-
semble forecasts based on multivariate linear regression approaches often outperform other ensemble
1 Corresponding author: Department of Statistics, Seoul National University, 1, Gwanak-ro, Gwanak-gu, Seoul 08826,

Korea. E-mail: ydkim903@snu.ac.kr

Published 31 January 2017 / journal homepage: http://csam.or.kr
c⃝ 2017 The Korean Statistical Society, and Korean International Statistical Society. All rights reserved.



68 Yongdai Kim, Woosung Kim, Ilsang Ohn, Young-Oh Kim

approaches and have been studied extensively (Gneiting et al., 2005; Kharin and Zwiers, 2002; Kr-
ishnamurti et al., 1999, 2000; Unger et al., 2009).

In climate forecasting, assessing the prediction uncertainty is as important as estimating the op-
timal weights, and this is achieved through a probabilistic forecast which is based on the predictive
distribution of future climate. A standard approach assumes that the predictive distribution belongs
to a given parametric family and estimates parameters accordingly while the mean is fixed at the
projected value by a deterministic ensemble forecast (Gneiting et al., 2005). However, this standard
approach would be suboptimal when the predictive distribution is not close to a given parametric
family. An alternative approach is Bayesian model averaging (BMA) that combines predictive distri-
butions of GCMs instead of combining projected values. Many empirical studies including Raftery
et al. (2005) and Sloughter et al. (2007) have shown that various BMA approaches outperform other
competitors in probabilistic forecasting.

BMA approaches work well; however, it is unclear how BMA approaches are related to Bayesian
principles. In this paper, we propose a new method to estimate predictive distribution based on the
BMA approach, which can be understood as model averaging with respect to approximated posterior
distribution. Suppose there are K many GCMs. In the proposed method, we first make the K many
sets of GCMs, each of which consists of (K−1) many GCMs obtained by deleting a GCM. For each set
of GCMs, we construct a predictive distribution based on a standard multivariate regression approach
with the Gaussian assumption. Finally, we combine the K many predictive distributions constructed
using the BMA approach. We call the proposed method the leave-one-out (LOO) BMA since the K
many predictive distributions combined by the BMA are constructed based on K many sets of GCMs
obtained by deleting a GCM. By analyzing real data, we demonstrate that the LOO BMA approach
outperforms the standard BMA approach in climate forecasting.

The LOO is popularly used to estimate the prediction error (Krzanowski and Hand, 1997). In
particular, the leave-one-out cross-validation error is an (nearly) unbiased estimator of the predic-
tion error (Efron, 1983). However, application of the leave-one-out approach for estimation of the
predictive distribution is new.

The paper is organized as follows. In Section 2, we review various methods for ensemble fore-
casting. The estimation of the predictive distribution based on the LOO BMA approach is explained
in Section 3. Results from analyzing monthly average precipitations and temperatures collected in 10
cities of Korea are presented in Section 4. In Section 5, another modification of the standard BMA ap-
proach, called the perturbed BMA, is proposed and is compared with LOO BMA. Concluding remarks
follow in Section 5.

2. Review of ensemble methods

2.1. Deterministic ensemble forecasting

The simplest method for deterministic ensemble forecasting uses the simple average of GCMs that
gives equal weights to all GCMs. A better method would be to assign different weights to GCMs based
on their individual ability. Reliability ensemble averaging (Giorgi and Mearns, 2002) and regional
skill score Dessai et al. (2005) are two such methods that both decide the weights based on the two
abilities of performance and convergence. The performance of a GCM is a quantity proportional to
the difference between the GCM forecasts and observations in past data. Convergence is measured by
the difference between the GCM forecasts and the average of the forecasts made by multiple GCMs
in future data. In general, GCMs with smaller performance and convergence receive higher weights.

Regression approaches have recently received significant attention. Let y1, . . . , yT be past obser-
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vations of a quantity of interest we want to forecast (e.g. precipitation), and let f1, . . . , fT be the cor-
responding projections of K many GCMs, where ft = ( ft1, . . . , ftK)

′
. Regression approaches assume

that

yt = β0 +

K∑
k=1

βk ftk + ϵt,

where ϵt are errors with mean 0 and variance σ2. Here, β0 is a term for bias correction and βk, k =
1, . . . ,K are considered to be the weights. A standard method to estimate the regression coefficients
β0, . . . , βK is to use the least square estimator that minimizes the sum of squared residuals

T∑
t=1

yt − β0 −
K∑

k=1

βk ftk

2

.

See, for example, Kharin and Zwiers (2002); Krishnamurti et al. (1999, 2000). Alternative methods
are the maximal entropy estimator by Laurent and Cai (2007), minimum Continuous Rank Probability
Score (CRPS) estimator by Gneiting et al. (2005) and Bayesian methods by Greene et al. (2006) and
Min and Hense (2006, 2007). Nonlinear models such as neural network (Maqsood et al., 2004) have
also been used.

2.2. Probabilistic ensemble forecasting

A standard approach for probabilistic forecasting assumes that

yt = ŷt + ϵt,

where ŷt’s are the projected values from a deterministic ensemble forecast and ϵt’s are assumed to be
independent random variables with mean 0. When ŷt are obtained by the regression approach, we
typically assume that ϵt follows a Gaussian distribution with mean 0 and variance σ2, and estimate σ2

by the mean squared error. Gneiting et al. (2005) considered an additional regression model for σ2.
They assumed that yt follows a Gaussian distribution with mean β0 +

∑K
k=1 βk ftk and variance c + ds2

t ,
where s2

t is the variance of ft1, . . . , ftK .
There is a way of using projections of multiple GCMs directly to estimate the predictive distribu-

tion without deterministic forecasting. Raftery et al. (2005) suggested the BMA in climate forecast,
which assumes

p(y|f) =
K∑

k=1

wkgk(y| fk),

where gk is a Gaussian distribution with the mean, ak + bk fk and variance, σ2. They used the
expectation-maximize (EM) algorithm to estimate the parameters. Duan et al. (2007) extended the
BMA model by allowing unequal variances by assuming that gk is a Gaussian distribution with mean
µk and variance σk. Sloughter et al. (2007) used gamma distributions for gk to forecast precipitation.
See Section 3.1 for more discussions of the BMA approach.

2.3. Verification methods

In general, there are two kinds of the verification methods for climate forecast. The first one, called
the determinant verification, measures the distance between observations and forecasted values. The
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second method, called the density verification, assesses the performance of the calibration of the
predictive distribution. Here, we say that a forecast method is calibrated if a meteorological event
with probability p occur with a proportion p on average.

The determinant verification typically uses the mean absolute error (MAE) and the root mean
square error (RMSE). The MAE is defined as

MAE =
1
T

T∑
t=1

|yt − ŷt |,

where ŷt denotes a forecasted value in time t. Similarly, the RMSE is defined as

RMSE =

√√√
1
T

T∑
t=1

(yt − ŷt)2.

Two popular measures for the density verification are the CRPS and the ignorance score (IGN).
The CRPS is defined as

CRPS =
1
T

T∑
t=1

∫ ∞

−∞
{P (y|ft) − I (yt ≤ y)}2 dy,

where P(y|f) =
∫ y
−∞ p(u|f)du and I(x < y) = 1 if x < y, and I(x < y) = 0 otherwise. The IGN is the

negative log-likelihood, given as

IGN = −
T∑

t=1

log p(yt |f).

The smaller value means the better prediction for both the CRPS and IGN, and both scores are proper
but the IGN is lack of robustness to outliers (Gneiting and Raftery, 2007).

Along with the CRPS and IGN, the probability integral transformation (PIT) is a graphical tool to
check the degree of calibration (Gneiting et al., 2007). The PIT value pt is defined as pt = P(yt |ft).
When P(y|ft) is the true predictive distribution function, it is known that pt follows the uniform distri-
bution. By comparing the histogram of pt with the density of the uniform distribution, we can check
graphically how well a given predictive distribution is calibrated.

3. Leave-one-out Bayesian model averaging

We begin this section to explain the three possible BMA approaches that motivate the proposed LOO
BMA approach.

3.1. Three versions of the Bayesian model averaging

The BMA approach proposed by Raftery et al. (2005) assumes that

p(y|f, θ) =
K∑

k=1

wkgk(y| fk), (3.1)

where gk is a Gaussian distribution with the mean, ak + bk fk and variance, σ2
k . The parameter vector

θ in the model (3.1) consists of (ak, bk), σ2
k and wk for k = 1, . . . ,K.
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According to the way of estimating the parameters, we can think of three versions of the BMA
approaches. The first one is to estimate all of the parameters simultaneously by maximizing the
likelihood of the BMA model (3.1):

L(θ) =
T∏

t=1

p (yt |ft, θ) . (3.2)

For the second BMA approach, we first estimate (ak, bk) by the least square estimates of the
univariate regression model for (yt, ftk). That is, we estimate (ak, bk) by (âk, b̂k) which minimizes∑T

t=1(yt − ak − bk ftk)2. Then, we estimate σk and wk for k = 1, . . . ,K by maximizing the likelihood
(3.2) of the BMA model with (ak, bk) being fixed at (âk, b̂k). In fact, this is the one Raftery et al.
(2005) proposed, and we call it the standard Bayesian model averaging.

By extending the second BMA approach, we can think of the following third BMA approach. We
estimate (ak, bk) and σ2

k by

(
âk, b̂k

)
= argmina,b

T∑
t=1

(yt − a − b ftk)2

and

σ̂2
k =

T∑
t=1

(
yt − âk − b̂k ftk

)2

T − 1
.

Then, we estimate wk for k = 1, . . . ,K by maximizing the likelihood (3.2) of the BMA model with
(ak, bk) and σ2

k being fixed at their estimates.
Table 1 compares the predictive performance of the three BMA approaches on the data sets which

are explained in Section 4. The second BMA approach outperforms the other two BMA approaches
in 9 out of 10 cities. It seems that the first BMA approach overfits predictive distribution while the
third BMA approach underfits. These results suggest that the key to success of the BMA approach
is to estimate σ2

k and wk using the BMA likelihood (3.2), while the mean functions are of secondary
importance. The proposed LOO BMA in this paper is devised to improve the standard BMA approach
by estimating the mean functions in the Gaussian distributions differently.

3.2. The proposed Bayesian model averaging

The proposed BMA approach assumes

pLOO (y|f, θ) =
K∑

k=1

wkgk
(
y|f(−k)

)
, (3.3)

where f(−k) = ( fl, l , k) and gk(y|f(−k)) are Gaussian distribution with mean

β(k)
0 +

∑
l,k

β(k)
l fl

and σ2
k . Here, θ consists of β(k)

0 , (β(k)
l , l , k), σ2

k and wk for k = 1, . . . ,K. Note that the mean of gk

depends on f(−k) in the proposed BMA model while it depends on fk in the standard BMA model. We
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Table 1: Comparison of the three BMA approaches

Area Method IGN CRPS Area Method IGN CRPS

Seoul
BMA-1 185.604 60.801

Imsil
BMA-1 152.443 48.317

BMA-2 149.540 46.027 BMA-2 140.816 43.169
BMA-3 153.418 47.330 BMA-3 143.409 44.326

Incheon
BMA-1 190.280 61.478

Jeonju
BMA-1 163.524 52.399

BMA-2 161.526 52.672 BMA-2 137.820 42.579
BMA-3 168.517 54.250 BMA-3 140.664 43.291

Daejeon
BMA-1 170.998 53.654

Gwangju
BMA-1 160.633 49.950

BMA-2 145.053 44.796 BMA-2 138.637 43.211
BMA-3 143.863 44.473 BMA-3 141.122 44.101

Daegu
BMA-1 185.445 65.578

Chuncheon
BMA-1 189.722 60.283

BMA-2 176.611 62.869 BMA-2 152.232 47.588
BMA-3 196.811 61.819 BMA-3 153.045 48.357

Busan
BMA-1 165.041 59.475

Gangneung
BMA-1 178.401 67.991

BMA-2 170.095 59.629 BMA-2 185.195 67.551
BMA-3 189.763 59.353 BMA-3 214.174 66.916

IGN = ignorance score; CRPS = continuous ranked probability score; BMA = Bayesian model averaging.

name the proposed model the LOO BMA model since the mean of each component (i.e. gk) depends
on all of the GCM projections except one (i.e. f(−k)).

To estimate the parameters, we use the method similar to the standard BMA approach. The re-
gression coefficients β(k)

0 and β(k)
l , l , k are estimated by β̂(k)

0 and β̂(k)
l , l , k which minimize

T∑
t=1

yt − β(k)
0 −

∑
l,k

β(k)
l ftl

2

.

Then, wk and σ2
k for k = 1, . . . ,K are estimated by maximizing the likelihood of the LOO BMA model

(3.3): L(θ) =
∏T

t=1 pLOO(yt |ft, θ). The maximum likelihood estimators of wk and σ2
k are calculated

easily by the following EM algorithm.
Suppose δt are independent multinomial random vectors with the cell probabilities w1, . . . ,wk.

Then, the complete log-likelihood of the LOO BMA likelihood is given by

lcomp =

T∑
t=1

 K∑
k=1

I(δt = k)

−1
2

logσ2
k −

(
yt − µ̂k

(
f(−k)

))2

2σ2
k

+ log wk


 ,

where

µ̂k
(
f(−k)

)
= β̂(k)

0 +
∑
l,k

β̂(k)
l ftl.

The E-step is to calculate vkt = E(I(δt = k)|data, ηc), where ηc is the current estimate of η =
(σ2

k ,wk, k = 1, . . . ,K). It turns out that

vkt =
wc

kϕ
(
yt |µ̂k

(
f(−k)

)
,
(
σ2

k

)c)
∑K

l=1 wc
l ϕ

(
yt |µ̂k

(
f(−k)

)
,
(
σ2

l

)c) ,
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where ϕ(y|µ, σ2) is the density function of the Gaussian distribution with mean µ and variance σ2. The
M-step updates σ2

k and wk by maximizing the expected complete log-likelihood given by

E
(
lcomp|data, ηc

)
=

T∑
t=1

 K∑
k=1

vkt

−1
2

logσ2
k −

(
yt − µ̂k

(
f(−k)

))2

2σ2
k

+ log wk




The σ̂2
k and ŵk maximizing E(lcomp|data, ηc) are

σ̂2
k =

∑T
t=1 vkt

(
yt − µ̂k

(
f(−k)

))2∑T
t=1 vkt

and

ŵk =

∑T
t=1 vkt∑K

l=1
∑T

t=1 vlt
.

We repeat the E and M steps until convergence.

Remark 1. The predictive distribution (3.3) of the LOO BMA model can be rewritten as

pLOO (y|f, θ) =
∫
η

g (y|f, η) π (dη) , (3.4)

where η = (β0, β, σ
2) and π has masses ŵk at ηk = (β̂(k)

0 , (β̂(k)
l , l , k), σ̂2

k). We can consider π(η) as a
proxi of the posterior distribution of η, which implies that the LOO BMA model can be understood
as a proxy of the Bayesian predictive distribution. That is, we approximate the posterior distribution
by the LOO distribution (i.e. the jack-knife distribution). Approximating the posterior distribution by
the jack-knife or bootstrap are well known (Efron, 2012; Simmons et al., 2004). This is the main mo-
tivation of the LOO BMA model. In Section 5, we consider another proxy of the Bayesian predictive
distribution using random perturbation and show that the performances of the two proxies are similar,
which confirms that our interpretation of the LOO BMA as a Bayesian predictive distribution makes
sense.

4. Numerical studies

4.1. Description of data

We analyze the monthly averages of precipitations and temperatures collected at 10 cities in Korea:
Seoul, Incheon, Daejeon, Daegu, Busan, Jeonju, Imsil, Gwangju, Chuncheon and Gangneung. Figure
1 presents the locations of the 10 cities on a map of Korea. The data set consists of 444 many monthly
average precipitation values collected from Jan 1973 to Dec 2009. The record lengths at all the sites
are identical. For each month, there are 5 GCM projections of the monthly average precipitation and
temperature. The 5 GCMs used in the analysis are given in Table 2. Data from Jan 1973 to Dec
1999 are used as the training data set and data from Jan 2000 to Dec 2009 as the test data set. For
precipitation, we apply the log transformation to the data before estimating the predictive distribution.
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Figure 1: Map of 10 cities in Korea.

Table 2: Five global climate models used in the analysis

Abbreviation Model (agency: version) Country
CSR CSIRO: MK3 Australia
GF1 GFDL: CM2 1 USA
MIU CONS: ECHO-G Germany/Korea
MRI MRI: CGCM2 3 2 Japan
UKC UKMO: HADGEM1 UK

4.2. Results for monthly average precipitations

The performance of the proposed LOO BMA (L-BMA) approach for the density verification is investi-
gated. In particular, we compare the L-BMA approach with the standard multivariate linear regression
model with Gaussian error (GA) and the standard BMA (S-BMA) approach.

Table 3 compares the two measures of the density verification for the three models: GA, S-BMA
and L-BMA. In general, the GA is the worst and the L-BMA is the best. The L-BMA also outperforms
the S-BMA for 8 out of 10 cities.

Figure 2 draws the coverage probabilities and interval lengths of the 50% and 90% predictive
intervals of the GA, S-BMA and L-BMA. The L-BMA achieves the nominal levels reasonably and
generally gives shorter interval lengths, which means that the L-BMA achieves better sharpness in
calibration.

Figure 3 provides the marginal predictive density functions of the three approaches at Seoul. The
predictive distributions of the S-BMA and L-BMA, which are very similar, have heavier tails than that
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Table 3: Comparison of the predictive performance

Area Method IGN CRPS Area Method IGN CRPS

Seoul
GA 152.712 47.822

Imsil
GA 141.684 43.876

S-BMA 149.540 46.027 S-BMA 140.816 43.169
L-BMA 147.735 46.177 L-BMA 138.391 42.880

Incheon
GA 168.238 54.049

Jeonju
GA 139.383 42.261

S-BMA 161.526 52.672 S-BMA 137.820 42.579
L-BMA 164.212 52.935 L-BMA 135.490 41.788

Daejeon
GA 139.027 43.224

Gwangju
GA 146.350 42.617

S-BMA 145.053 44.796 S-BMA 138.637 43.211
L-BMA 141.938 43.666 L-BMA 135.850 42.382

Daegu
GA 195.519 61.625

Chuncheon
GA 154.696 47.712

S-BMA 176.611 62.869 S-BMA 152.232 47.588
L-BMA 176.501 62.084 L-BMA 148.523 46.960

Busan
GA 192.645 59.618

Gangneung
GA 211.997 66.517

S-BMA 170.095 59.629 S-BMA 185.195 67.551
L-BMA 170.535 58.643 L-BMA 181.746 65.784

IGN = ignorance score; CRPS = continuous ranked probability score; GA= Gaussian error; L-BMA = leave-one-out (LOO)
BMA; S-BMA = standard BMA.
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Figure 2: Coverage probabilities of (a) 50%, (b) 90% predictive intervals and lengths of (c) 50%, (d) 90%
predictive intervals.
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Figure 3: Histogram of the monthly average precipitation of Seoul with the marginal predictive densities based
on the three methods.

of the GA. The distribution of monthly precipitation has a heavier tails than the Gaussian distribution,
and the BMA approaches capture this characteristic successfully. The marginal predictive densities of
the other cities are similar.

Figure 4 draws the time series plot of the test data set of Seoul with 90% predictive intervals
estimated by the L-BMA approach. The predictive intervals cover future precipitations well.

4.3. Prediction performance for forecasting monthly average temperatures

We applied the L-BMA approach to monthly mean temperatures of the 10 cities in Korea to get Table
4. Similarly to precipitation, the L-BMA outperforms the GA and S-BMA in predicting temperature.

5. Perturbed BMA

The L-BMA consists of the two steps. The first step is to estimate the mean functions of the Gaussian
components by the LOO method, and the second step is to estimate the weights and variances by
the maximum likelihood estimates. We can modify the L-BMA by estimating mean functions by
perturbing data as follows. We assume that

ppert (y|f, θ) =
M∑

m=1

wmgm (y|f) (5.1)

for some M > 0, where gm(y|f) are Gaussian distributions with mean µm(f) and variance σ2
m. For each

m = 1, . . . , M, we generate perturbed outputs ỹ(m)
t , t = 1, . . . , T, by ỹ(m)

t = yt + ϵ
(m)
t , where ϵ(m)

t are
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Figure 4: Time series plot of the monthly average precipitation with the 90% predictive intervals of the LOO
BMA approach for Seoul.

independent Gaussian random variables with mean 0 and variance σ2
ϵ . We estimate the mean function

µm(f) by β̂(m)
0 +

∑K
k=1 β̂

(m)
k fk, where β̂(m)

0 and β̂(m)
k , k = 1, . . . ,K are obtained by minimizing

T∑
t=1

ỹ(m)
t − β0 −

K∑
k=1

βk ftk

2

.

Finally, the weights wm and variances σ2
m are estimated by maximum likelihood estimates. We call

this method the perturbed BMA. In the perturbed BMA, the number of components M does not have
to be equal to the number of GCMs K. The perturbed BMA is motivated by the ensemble algorithm
called random forest of Breiman (2001) for regression and classification. While random forest makes
multiple models by selecting the parameters randomly, the perturbed BMA generates multiple models
by injecting randomness into data. However, the estimated parameter obtained with data injected by
random noises can be considered as random and the perturbed BMA is therefore similar to random
forest.

Table 5 compares the L-BMA and perturbed BMA. For the perturbed BMA, we set M = 10 and
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Table 4: Comparison of the predictive performance of mean temperatures

Area Method IGN CRPS Area Method IGN CRPS

Seoul
GA 222.745 42.102

Imsil
GA 216.394 34.811

S-BMA 210.310 41.847 S-BMA 202.345 36.254
L-BMA 202.268 41.895 L-BMA 196.960 34.679

Incheon
GA 213.975 38.788

Jeonju
GA 208.064 43.317

S-BMA 215.759 41.356 S-BMA 199.909 45.669
L-BMA 202.495 39.579 L-BMA 191.882 43.238

Daejeon
GA 214.478 41.814

Gwangju
GA 201.585 43.134

S-BMA 204.837 41.325 S-BMA 195.078 45.080
L-BMA 199.399 41.638 L-BMA 187.871 43.126

Daegu
GA 214.542 51.784

Chuncheon
GA 214.676 29.708

S-BMA 208.229 51.970 S-BMA 199.277 31.535
L-BMA 203.435 52.293 L-BMA 191.630 30.161

Busan
GA 210.020 45.179

Gangneung
GA 225.769 49.197

S-BMA 199.833 47.653 S-BMA 209.332 49.196
L-BMA 203.348 48.036 L-BMA 206.253 49.085

IGN = ignorance score; CRPS = continuous ranked probability score; GA= Gaussian error; L-BMA = leave-one-out (LOO)
BMA; S-BMA = standard BMA.

Table 5: Comparison of the predictive performance of the LOO BMA (L-BMA) and perturbed BMA (P-BMA)
on monthly average precipitation

Area Method IGN CRPS Area Method IGN CRPS

Seoul L-BMA 147.735 46.177 Imsil L-BMA 138.391 42.880
P-BMA 146.748 45.867 P-BMA 142.363 43.847

Incheon L-BMA 164.212 52.935 Jeonju L-BMA 135.490 41.788
P-BMA 161.388 52.530 P-BMA 137.479 42.166

Daejeon L-BMA 141.938 43.666 Gwangju L-BMA 135.850 42.382
P-BMA 141.155 43.329 P-BMA 133.661 41.853

Daegu L-BMA 176.501 62.084 Chuncheon L-BMA 148.523 46.960
P-BMA 172.259 60.620 P-BMA 149.274 47.226

Busan L-BMA 170.535 58.643 Gangneung L-BMA 181.746 65.784
P-BMA 165.380 57.516 P-BMA 185.168 66.474

IGN = ignorance score; CRPS = continuous ranked probability score; L-BMA = leave-one-out (LOO) BMA; P-BMA =
perturbed BMA.

σ2
ϵ = 2mse, where

mse =

∑T
t=1

(
yt − β̂0 −

∑K
k=1 β̂k ftk

)2

T − K − 1

and β̂0 and β̂k, k = 1, . . . ,K are the least square estimates based on (yt, ft), t = 1 . . . , T. The prediction
performance of the perturbed BMA for other values of M and σ2

ϵ are similar unless these two values
are too large or too small. We can see from Table 5 that the two BMA approaches show similar
prediction performance.

6. Concluding remarks

We proposed the two variations of the standard BMA approach: the LOO BMA and perturbed BMA.
We showed empirically that the two proposed BMA approaches outperformed the standard BMA.
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Even though we considered the Gaussian mixture model, the proposed BMA approaches can be
applied to other mixture distributions as long as the mean of each component is assumed to be linear
with respect to GCM projections. For example, instead of the mixture of log-normal distributions, we
may consider the BMA approach with gamma distributions for monthly average precipitation; there-
fore, the corresponding LOO and perturbed BMA approaches can be developed without significant
difficulty.

In Section 5, we showed that there is an analogy between the BMA approaches and ensemble
methods to generate predictive models for regression and classification. Breiman (2001) explained
the success of ensemble methods by the trade-off between strength and diversity. We could explain
the success of the BMA to estimate the predictive distribution similarly, which we leave for future
work.
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