DOI QR코드

DOI QR Code

A Development of Summer Seasonal Rainfall and Extreme Rainfall Outlook Using Bayesian Beta Model and Climate Information

기상인자 및 Bayesian Beta 모형을 이용한 여름철 계절강수량 및 지속시간별 극치 강수량 전망 기법 개발

  • 김용탁 (전북대학교 토목공학과) ;
  • 이문섭 (한국수자원공사 물정보종합센터) ;
  • 채병수 (한국수자원공사 물정보종합센터) ;
  • 권현한 (전북대학교 토목공학과)
  • Received : 2018.05.21
  • Accepted : 2018.07.09
  • Published : 2018.10.01

Abstract

In this study, we developed a hybrid forecasting model based on a four-parameter distribution which allows a simultaneous season-ahead forecasting for both seasonal rainfall and sub-daily rainfall in Han-River and Geum-River basins. The proposed model is mainly utilized a set of time-varying predictors and the associated model parameters were estimated within a Bayesian nonstationary rainfall frequency framework. The hybrid forecasting model was validated through an cross-validatory experiment using the recent rainfall events during 2014~2017 in both basins. The seasonal precipitation results showed a good agreement with the observations, which is about 86.3% and 98.9% in Han-River basin and Geum-River basin, respectively. Similarly, for the extreme rainfalls at sub-daily scale, the results showed a good correspondence between the observed and simulated rainfalls with a range of 65.9~99.7%. Therefore, it can be concluded that the proposed model could be used to better consider climate variability at multiple time scales.

본 연구에서는 비정상성 Bayesian 빈도해석모형을 토대로 외부 기상인자에 의한 시변성을 고려할 수 있는 계절강수량 예측모형을 구축한 후 산정된 결과를 입력 자료로 하여 직접적으로 일단위 이하의 극치강수량을 상세화시킬 수 있는 베타 모델(four parameter beta, 4PB)을 연계하여 한강 및 금강유역의 미래 계절 강수량 전망 및 일단위 이하의 확률강수량을 도출하였다. 모형의 적합성 검증을 위하여 2014~2017년의 모의된 사후 확률분포 값과 관측치를 비교하였다. 그 결과 계절강수량 모의에서 한강은 관측 값의 최대 약 86.3%, 금강은 약 98.9% 일치하는 것을 확인할 수 있었다. 지속시간별 극치강우량은 약 65.9~99.7%의 정확성을 나타냈다. 이에 본 연구에서 산정한 결과는 기상변동성을 다양한 시간규모에서 고려하기 위한 정보로 활용할 수 있을 것으로 판단된다.

Keywords

References

  1. Bhunya, P. K., Berndtsson, R., Ojha, C. S. P. and Mishra, S. K. (2007). "Suitability of gamma, chi-square, weibull, and beta distributions as synthetic unit hydrographs." Journal of Hydrology, Vol. 334, No. 1-2, pp. 28-38. https://doi.org/10.1016/j.jhydrol.2006.09.022
  2. Chang, C. P., Zhang, Y. S. and Li, T. (2000). "Interannual and interdecadal variations of the east asian summer monsoon and the tropical pacific SSTs. Part II: Meridional structure of the monsoon." Journal of Climate, Vol. 13, No. 24, pp. 4326-4340. https://doi.org/10.1175/1520-0442(2000)013<4326:IAIVOT>2.0.CO;2
  3. Choi, Y. E., Lee, H. S. and Kwon, J. I. (2013). "Recent change on frequency-magnitude of summer extreme rainfall events over the Republic of Korea." The Geographical Journal of Korea, Vol. 47, No. 1, pp. 83-97 (in Korean).
  4. Clark, C. O., Cole, J. E. and Webster, P. J. (2000). "Indian ocean SST and indian summer rainfall: Predictive relationships and their decadal variability." Journal of Climate, Vol. 13, pp. 2503-2518. https://doi.org/10.1175/1520-0442(2000)013<2503:IOSAIS>2.0.CO;2
  5. El Adlouni, S., Ouarda, T. B. M. J., Zhang, X., Roy, R. and Bobee, B. (2007). "Generalized maximum likelihood estimators for the nonstationary generalized extreme value model." Water Resources Research, Vol. 43, No. 3, doi:10.1029/2005WR004545.
  6. Fan, M. and Schneider, E. K. (2012). "Observed decadal north atlantic tripole SST variability. Part I: Weather noise forcing and coupled response." Journal of the Atmospheric Sciences, Vol. 69, No. 1, pp. 35-50. https://doi.org/10.1175/JAS-D-11-018.1
  7. Gelman, A., Carlin, J. B., Stern, H. S., Dunson, D. B., Vehtari, A. and Rubin, D. B. (2013). "Bayesian data analysis." 3rd Edition, CRC Press.
  8. Grum, M., Jorgensen, A. T., Johansen, R. M. and Linde, J. J. (2006). "The effect of climate change on urban drainage: An evaluation based on regional climate model simulations." Water Science and Technology, Vol. 54, No. 6-7, pp. 9-15. https://doi.org/10.2166/wst.2006.592
  9. Haddad, K., Rahman, A. and Stedinger, J. R. (2012). "Regional flood frequency analysis using bayesian generalized least squares: A comparison between quantile and parameter regression techniques." Hydrological Processes, Vol. 26, No. 7, pp. 1008-1021. https://doi.org/10.1002/hyp.8189
  10. Hendon, H. H. and Liebmann, B. (1990). "A composite study of onset of the australian summer monsoon." Journal of the Atmospheric Sciences, Vol. 47, No. 18, pp. 2227-2240. https://doi.org/10.1175/1520-0469(1990)047<2227:ACSOOO>2.0.CO;2
  11. Higgins, R. and Shi, W. (2001). "Intercomparison of the principal modes of interannual and intraseasonal variability of the north american monsoon system." Journal of Climate, Vol. 14, No. 3, pp. 403-417. https://doi.org/10.1175/1520-0442(2001)014<0403:IOTPMO>2.0.CO;2
  12. Im, S. H., Lee, G. S., Kwon, H. H. and Lee, K. K. (2010). Improving flood countermeasures against climate change in Jeollabuk-do. 2010-PR-10 (in Korean).
  13. Johnson, N. L., Kotz, S. and Balakrishnan, N. (1995). "Continuous univariate distributions." Vol. 2 of wiley series in probability and mathematical statistics: applied probability and statistics.
  14. Kim, D. K., Shin, J. Y., Lee, S. O. and Kim, T. W. (2013). "The application of the poisson cluster rainfall generation model to the flood analysis." Journal of Korea Water Resources Association, Vol. 46, No. 5, pp. 439-447 (in Korean). https://doi.org/10.3741/JKWRA.2013.46.5.439
  15. Kim, J. G., Kwon, H. H. and Kim, D. K. (2014). "A development of hourly rainfall simulation technique based on bayesian MBLRP model." Journal of Korean Society of Civil Engineers, Vol. 34, No. 3, pp. 821-831 (in Korean). https://doi.org/10.12652/Ksce.2014.34.3.0821
  16. Kim, K. B., Kwon, H. H. and Han, D. (2015). "Bias correction methods for regional climate model simulations considering the distributional parametric uncertainty underlying the observations." Journal of Hydrology, Vol. 530, pp. 568-579. https://doi.org/10.1016/j.jhydrol.2015.10.015
  17. Kim, K. B., Kwon, H. H. and Han, D. (2016). "Precipitation ensembles conforming to natural variations derived from a regional climate model using a new bias correction scheme." Hydrology and Earth System Sciences, Vol. 20, No. 5, pp. 2019-2034. https://doi.org/10.5194/hess-20-2019-2016
  18. Kwon, H. H. and So, B. J. (2011). "Development of daily rainfall simulation model using piecewise kernel-pareto continuous distribution." Journal of Korean Society of Civil Engineers, Vol. 31, No. 3B, pp. 277-284 (in Korean).
  19. Kwon, H. H., Brown, C. and Lall, U. (2008). "Climate informed flood frequency analysis and prediction in montana using herarhical bayesian modeling." Geophysical Research Letters, Vol. 35, No. 5, doi:10.1029/2007GL032220.
  20. Kwon, H. H., Kim, T. J., Kim, O. K. and Lee, D. R. (2013). "Development of multi-site daily rainfall simulation based on homogeneous hidden markov chain model coupled with chow-liu tree structures." Journal of Korea Water Resources Association, Vol. 46, No. 10, pp. 1029-1040 (in Korean). https://doi.org/10.3741/JKWRA.2013.46.10.1029
  21. Kyoung, M. S., Sivakumar, B., Kim, H. S. and Kim, B. S. (2008). "Chaotic disaggregation of daily rainfall time series." Journal of Korea Water Resources Association, Vol. 41, No. 9, pp. 959-967 (in Korean). https://doi.org/10.3741/JKWRA.2008.41.9.959
  22. Latif, M., Sterl, A., Assenbaum, M., Junge, M. M. and Maierreimer, E. (1994). "Climate variability in a coupled GCM. Part II: The Indian Ocean and monsoon." Journal of Climate, Vol. 7, No. 10, pp. 1449-1462. https://doi.org/10.1175/1520-0442(1994)007<1449:CVIACG>2.0.CO;2
  23. Lawrence, D. M. and Webster, P. J. (2002). "The boreal summer intraseasonal oscillation: Relationship between northward and eastward movement of convection." Journal of the Atmospheric Sciences, Vol. 59, No. 9, pp. 1593-1606. https://doi.org/10.1175/1520-0469(2002)059<1593:TBSIOR>2.0.CO;2
  24. Lima, C. H., Kwon, H. H. and Kim, J. Y. (2016). A bayesian beta distribution model for estimating rainfall IDF curves in a changing climate. Journal of Hydrology, Vol. 540, 744-756. https://doi.org/10.1016/j.jhydrol.2016.06.062
  25. Maloney, E. D. and Hartmann, D. L. (2000). "Modulation of eastern north pacific hurricanes by the madden-julian oscillation." Journal of Climate, Vol. 13, No. 9, pp. 1451-1460. https://doi.org/10.1175/1520-0442(2000)013<1451:MOENPH>2.0.CO;2
  26. Martins, E. S. and Stedinger, J. R. (2000). "Generalized maximum‐ likelihood generalized extreme‐value quantile estimators for hydrologic data." Water Resources Research, Vol. 36, No. 3, pp. 737-744. https://doi.org/10.1029/1999WR900330
  27. Ministry of Land, Transport and Maritime Affairs (2010), Future Water Resources Strategy for Climate Change (in Korean).
  28. Nobilis, F., Haiden, T. and Kerschbaum, M. (1991). "Statistical considerations concerning probable maximum precipitation (PMP) in the alpine country of austria." Theoretical and applied climatology, Vol. 44, No. 2, pp. 89-94. https://doi.org/10.1007/BF00867996
  29. Oh, J. H., Kim, T., Kim, M. K., Lee, S. H., Min, S. K. and Kwon, W. T. (2004). "Regional climate simulation for Korea using dynamic downscaling and statistical adjustment." Journal of the Meteorological Society of Japan, Ser. II, Vol. 82, No. 6, pp. 1629-1643. https://doi.org/10.2151/jmsj.82.1629
  30. Salas, J. D. and Obeysekera, J. (2014). "Revisiting the concepts of return period and risk for nonstationary hydrologic extreme events." Journal of Hydrologic Engineering, Vol. 19, No. 3, pp. 554-568. https://doi.org/10.1061/(ASCE)HE.1943-5584.0000820
  31. Viglione, A., Merz, R., Salinas, J. L. and Bloschl, G. (2013). "Flood frequency hydrology: 3. A bayesian analysis." Water Resources Research, Vol. 49, No. 2, pp. 675-692, doi:10.1029/2011WR010782.
  32. Wang, B., Wu, R. G. and Fu, X. H. (2000). "Pacific-East asian teleconnection: How does ENSO affect east asian climate?" Journal of Climate, Vol. 13, No. 9, pp. 1517-1536. https://doi.org/10.1175/1520-0442(2000)013<1517:PEATHD>2.0.CO;2
  33. Wilby, R. L., Hay, L. E., Gutowski, W. J. J., Arritt, R. W., Takle, E. S., Pan, Z., Leavesley, G. H. and Clark, M. P. (2000). "Hydrological responses to dynamically and statistically downscaled climate model output." Geophysical Research Letters, Vol. 27, pp. 1199-1202. https://doi.org/10.1029/1999GL006078
  34. Wilby, R. L., Wigley, T. M. L., Conway, D., Jones, P. D., Hewitson, B. C., Mailn, J. and Wilks, D. S. (1998). "Statistical downscaling of general circulation model output: A comparison of methods." Journal of The Water Resources Research, Vol. 34, pp. 2995-3008. https://doi.org/10.1029/98WR02577
  35. Willems, P. and Vrac, M. (2011). "Statistical precipitation downscaling for small-scale hydrological impact investigations of climate change." Journal of Hydrology, Vol. 402, pp. 193-205. https://doi.org/10.1016/j.jhydrol.2011.02.030
  36. Wu, R. G., Hu, Z. Z. and Kirtman, B. P. (2003). "Evolution of ENSO-related rainfall anomalies in East Asia." Journal of Climate, Vol. 16, No. 22, pp. 3742-3758. https://doi.org/10.1175/1520-0442(2003)016<3742:EOERAI>2.0.CO;2