• 제목/요약/키워드: Bayesian estimate

검색결과 324건 처리시간 0.052초

베이지안 보정 기법을 활용한 생물-물리-화학적 반응 동역학 모델 최적화: 미생물 성장-사멸과 응집 동역학에 대한 사례 연구 (Application of Bayesian Calibration for Optimizing Biophysicochemical Reaction Kinetics Models in Water Environments and Treatment Systems: Case Studies in the Microbial Growth-decay and Flocculation Processes)

  • 이병준
    • 한국물환경학회지
    • /
    • 제40권4호
    • /
    • pp.179-194
    • /
    • 2024
  • Biophysicochemical processes in water environments and treatment systems have been great concerns of engineers and scientists for controlling the fate and transport of contaminants. These processes are practically formulated as mathematical models written in coupled differential equations. However, because these process-based mathematical models consist of a large number of model parameters, they are complicated in analytical or numerical computation. Users need to perform substantial trials and errors to achieve the best-fit simulation to measurements, relying on arbitrary selection of fitting parameters. Therefore, this study adopted a Bayesian calibration method to estimate best-fit model parameters in a systematic way and evaluated the applicability of the calibration method to biophysicochemical processes of water environments and treatment systems. The Bayesian calibration method was applied to the microbial growth-decay kinetics and flocculation kinetics, of which experimental data were obtained with batch kinetic experiments. The Bayesian calibration method was proven to be a reasonable, effective way for best-fit parameter estimation, demonstrating not only high-quality fitness, but also sensitivity of each parameter and correlation between different parameters. This state-of-the-art method will eventually help scientists and engineers to use complex process-based mathematical models consisting of various biophysicochemical processes.

베이스 경신법을 활용한 구조물 안전성평가 개선 (Improvement in Safety Evaluation of Structures using the Bayesian Updating Approach)

  • 박기동;이상복;김준기;나창순
    • 한국전산구조공학회논문집
    • /
    • 제29권2호
    • /
    • pp.115-122
    • /
    • 2016
  • 기존 건축물의 구조 안전성평가와 보수 보강 시에는 해당 건축물의 상태를 정확히 알기 위해 현장 또는 실험실에서의 실험을 수행하는 경우가 많고 최초설계 단계와 다르게 시공된 건축물의 실제 상태 등을 구조해석 모델에 반영하게 된다. 이 경우, 각종 실험값을 전통적인 통계학적 방법은 구조기술자가 지닌 경험과 지식은 구조모델링 및 해석에서 아무런 가치를 더 할 수가 없다. 본 논문은 현장 및 실험실에서 얻은 단순한 실험값을 구조기술자의 축적된 경험과 지식을 변수로 활용하여 보다 유효하게 구조해석 모델에 필요한 데이터로 개선하는 방법으로서 통계학적인 베이스 경신법을 이용한 안전성평가 방법에 대해 살펴보았다. 구조기술자의 적절한 판단이 변수로서 포함되면 적은 개수의 샘플 수로도 비교적 정확한 값의 최종 예측값을 산정할 수 있어 전통적인 통계학적 접근에 비해 보다 실제값에 근접한 예측값을 구할 수 있는 것을 확인하였다.

콘크리트 구조물의 합리적인 압축강도 추정기법 연구 (Realistic Estimation Method of Compressive Strength in Concrete Structure)

  • 오병환;양인환
    • 콘크리트학회지
    • /
    • 제11권2호
    • /
    • pp.241-249
    • /
    • 1999
  • 실제 구조물의 정확하고 합리적인 압축강도 추정을 위해서는 통계학적으로 많은 실험데이타가 필요하다. 그러나, 실제로 압축강도 자료가 제한되어 있기 때문에 추정에 어려움이 있다. 따라서, 본 연구에서는 적은 자료를 가지고 콘크리트의 실제적인 압축강도 추정을 위해 합리적인 베이시안 기법을 도입하여 콘크리트 강도추정 방법을 제시하였다. 여기서, 콘크리트의 평균 압축강도는 확률변수로 고려한다. 콘크리트 압축강도의 베이시안 업데이팅을 위해 사전확률분포는 기존의 자료를 반영하여 표현하며, 우도함수는 측정치의 특성을 반영하였다. 사후확률분포는 사전확률분포와 우도함수를 조합하여 나타내었다. 콘크리트 교량 현장에서 제작한 실린더 공시체로부터 측정한 자료를 이용하여 수치해석을 수행하였다. 수치해석결과는 상대적으로 적은 개수의 측정자료를 사용하고도 실제에 가까운 사후확률분포를 추정할 수 있는 것을 보여 주고 있다. 또한, 우도함수 분포의 신뢰구간에 대한 사전확률분포의 신뢰구간의 상대적인 크기는 사후확률분포의 결정에 영향을 미치는 것으로 나타났다. 본 논문에서 제시된 방법은 적은 현장측정자료를 가지고도 합리적인 강도추정이 가능함을 보여주고 있으며, 실제에 유용하게 활용될 수 있을 것으로 사료된다.

확장 Baysian 방법과 상대변위를 이용한 터널 역해석 기법의 적용사례연구 (A Case Study of Back-analysis Technique in Tunnelling Using Extended Bayesian Method and Relative Convergence Measurement)

  • 이인모;최민광;조국환;이근하;최충식
    • 한국지반공학회논문집
    • /
    • 제21권3호
    • /
    • pp.109-118
    • /
    • 2005
  • 터널과 같은 선형 구조물의 경우, 터널이 시공될 지반의 전체적인 상태를 설계단계에서 정확히 파악하기는 매우 힘든 것이 사실이다. 따라서 시공과정에서 획득되어지는 계측자료와 설계단계에의 사전정보를 적절히 조합하는 피드백(feed-back)과정이 필수적이게 된다. 본 논문에서는 터널 내에서 계측된 상대변위만을 역해석 입력값으로 적용한 3차원 터널 역해석 기법을 이용하여 터널 주변 지반의 최적의 지반정수를 평가하였다. 이를 위하여 예측치와 계측치를 합리적으로 조합할 수 있는 확장 Bayesian 방법(Extended Bayesian Meoth EBM)을 역해석의 목적함수로 사용하였으며, 터널 내공변위 예측을 위해 3차원 수치해석을 적용하였다. 두 곳의 실제 터널 현장계측자료를 바탕으로 역해석을 수행하였으며, 이를 통하여 제안된 역해석 기법의 효용성을 검증하였다.

Grid Method 기법을 이용한 베이지안 비정상성 확률강수량 산정 (Bayesian Nonstationary Probability Rainfall Estimation using the Grid Method)

  • 곽도현;김광섭
    • 한국수자원학회논문집
    • /
    • 제48권1호
    • /
    • pp.37-44
    • /
    • 2015
  • 본 연구에서는 Grid method를 사용하여 베이지안 비정상성 확률강우량 산정 모형을 확립하였다. 강우 극치자료의 분포로 Gumbel 분포를 채택하였으며, 분포형의 매개변수에 사전분포를 적용하고, 사전분포에 포함된 매개변수에는 초사전 분포를 적용하여 계층적 베이지안 모형을 구성하였다. Grid method는 매개변수의 발생가능 전 구간에 대하여 확률적으로 더 높은 뒷받침이 있는 하위 구간에서 난수를 직접 생성하여 집합을 구성함으로써 잘못된 결과를 도출할 수 가능성이 높은 상황에서도 보다 정확한 매개변수의 추정을 가능케 하므로 매개변수의 추정과정에서 비표준분포로 나타나는 조건부 확률밀도함수를 통한 난수의 추출은 기존에 사용해 온 Metropolis Hastings 알고리즘이 아닌 Grid method를 사용하였다. 개발된 모형은 서울의 1973년부터 2012년까지의 시강우자료를 이용하여 미래에 대한 재현기간에 따른 확률강수량을 산정하였으며, 그 결과로 기존 정상성 가정에 비해 목표연도에 따라 5%에서 8%정도의 증가율을 나타냈다.

변분 베이지안 혼합 인자 분석에 의한 분포 추정을 이용하는 진화 알고리즘 (Evolutionary Algorithms with Distribution Estimation by Variational Bayesian Mixtures of Factor Analyzers)

  • 조동연;장병탁
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제32권11호
    • /
    • pp.1071-1083
    • /
    • 2005
  • 최근 들어 확률 분포를 개체군으로부터 추정하여 보다 효율적으로 최적화를 해결하려는 연구가 진행되고 있다. 특히 복잡한 문제의 해결을 위해서 혼합 분포가 사용되고 있다. 그러나 이 경우 몇 개의 성분으로 혼합 분포를 나타낼 것인가를 결정하기 어려운 문제가 있으며, 각 분포에 의하여 표현되는 이전 세대의 우수한 부분 해들을 잘 결합하지 못하는 단점이 있다. 본 논문에서는 변분 베이지안 혼합 인자 분석(variational Bayesian mixtures of factor analyzers) 기법을 사용한 개체군의 분포 추정을 통해 실수 공간에서의 최적화 문제를 해결하는 방법을 제안한다. 이 기법은 혼합 분포의 개수 추정을 자동화하며, 잠재 변수(latent variable)를 사용하여 각 분포가 표현하는 세부 개체군 내에 포함된 부분 해들의 혼합을 효율적으로 수행할 수 있다. 잘 알려진 함수 최적화 문제들에 대해 다른 분포 추정 진화 알고리즘과 비교하여 제안하는 방법의 우수성을 검증하였다. 또한 시스템 생물학에서 다루고 있는 생화학 네트워크의 동적 모델링을 위한 매개변수 추정도 성공적으로 수행하였다.

수문해석과정의 불확실성을 고려한 수문학적 댐 위험도 해석 기법 개선 (Improvement of Hydrologic Dam Risk Analysis Model Considering Uncertainty of Hydrologic Analysis Process)

  • 나봉길;김진영;권현한;임정열
    • 한국수자원학회논문집
    • /
    • 제47권10호
    • /
    • pp.853-865
    • /
    • 2014
  • 수문학적 댐 위험도 분석은 복잡한 수문분석과 연계되어 있으며, 기본적으로 수문분석 과정과 모형에 사용되는 입력자료에 대한 불확실성을 평가하는 과정이 필요하다. 그러나 체계적인 불확실성 분석 과정을 통한 댐 위험도 분석 절차에 대한 연구는 상대적으로 적은편이다. 이러한 점에서 본 연구에서는 기존 연구에 대해서 2가지 주요 개선점을 도출하여 댐 위험도 분석에 활용하였다. 첫째, 강우 분석시 매개변수의 불확실성 분석이 가능한 Bayesian 모형 기반의 지역빈도해석 절차를 수립하였다. 둘째, 강우-유출 모형 매개변수의 사후분포를 정량적으로 추정하기 위하여 Bayesian 모형과 연계한 HEC-1모형을도입하였다. 도출된 유입 시나리오를 댐의 수위로 환산하기 위하여 기존 저수지 운영기준에 근거하여 저수지 추적을 수행하였으며, 최종적으로 실행함수를 통하여 수문학적 위험도를 추정하였다. 실제 댐에 대해서 모형의 적합성을 평가하였으며, 초기수위 가정에 따른 수문학적 위험도에 민감도를 평가하였다.

이변량 가뭄빈도해석을 위한 Bayesian Copula 모델 개발 (A development of Bayesian Copula model for a bivariate drought frequency analysis)

  • 김진영;김진국;조영현;권현한
    • 한국수자원학회논문집
    • /
    • 제50권11호
    • /
    • pp.745-758
    • /
    • 2017
  • Copula 함수 기반의 모형들은 가뭄빈도해석 및 수문시계열분석 등 수문학적 모델링을 위해 다각적으로 활용되고 있다. 그러나 기존 연구에서는 Copula 함수 및 주변확률분포 매개변수에 대한 불확실성을 정량적으로 평가할 수 있는 모형의 개발 사례는 국내외적으로 미진한 실정이다. 이러한 점에서 본 연구에서는 기존 Copula 모형에 Bayesian 기법을 도입하여 매개변수의 불확실성을 평가할 수 있는 이변량 가뭄빈도해석 기법을 개발하였다. 본 연구에서는 우선적으로 모의자료를 대상으로 모형의 적합성을 평가하였으며, 모형 적용결과 가정한 매개변수를 정확하게 재추정하는 것을 확인할 수 있다. 최종적으로 기 개발된 Bayesian Copula 함수 기반의 이변량 가뭄빈도해석 모형을 한강유역에 적용하여 최근 2013~2015년에 가뭄 사상을 평가하였다. 서울, 경기 및 강원 지역에서 특히 가뭄이 심한 것으로 나타났으며, 대부분의 지역에서 결합재현기간이 100년을 상회하는 것으로 평가되었다. 본 연구를 통해 제안된 모형의 검증과정과 도출된 결과를 기준으로 판단해보면 가뭄자료의 분포특성 및 자료간의 상관성을 효과적으로 재현하는데 유리할 뿐만 아니라 매개변수의 불확실성을 평가할 수 있는 장점을 확인할 수 있었다.

Estimation based on lower record values from exponentiated Pareto distribution

  • Yoon, Sanggyeong;Cho, Youngseuk;Lee, Kyeongjun
    • Journal of the Korean Data and Information Science Society
    • /
    • 제28권5호
    • /
    • pp.1205-1215
    • /
    • 2017
  • In this paper, we aim to estimate two scale-parameters of exponentiated Pareto distribution (EPD) based on lower record values. Record values arise naturally in many real life applications involving data relating to weather, sport, economics and life testing studies. We calculate the Bayesian estimators for the two parameters of EPD based on lower record values. The Bayes estimators of two parameters for the EPD with lower record values under the squared error loss (SEL), linex loss (LL) and entropy loss (EL) functions are provided. Lindley's approximate method is used to compute these estimators. We compare the Bayesian estimators in the sense of the bias and root mean squared estimates (RMSE).

Combining Geostatistical Indicator Kriging with Bayesian Approach for Supervised Classification

  • Park, No-Wook;Chi, Kwang-Hoon;Moon, Wooil-M.;Kwon, Byung-Doo
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2002년도 Proceedings of International Symposium on Remote Sensing
    • /
    • pp.382-387
    • /
    • 2002
  • In this paper, we propose a geostatistical approach incorporated to the Bayesian data fusion technique for supervised classification of multi-sensor remote sensing data. Traditional spectral based classification cannot account for the spatial information and may result in unrealistic classification results. To obtain accurate spatial/contextual information, the indicator kriging that allows one to estimate the probability of occurrence of classes on the basis of surrounding observations is incorporated into the Bayesian framework. This approach has its merit incorporating both the spectral information and spatial information and improves the confidence level in the final data fusion task. To illustrate the proposed scheme, supervised classification of multi-sensor test remote sensing data set was carried out.

  • PDF