It is required for UGV(Unmanned Ground Vehicle) to have a LPP(Local Path Plan) component which generate a local path via the center of road by analyzing binary map to travel autonomously unpaved road in rough environment. In this paper, we present the method of boundary estimation for unpaved road and a local path planning method based on RANGER algorithm using the estimated boundary. In specially, the paper presents an approach to estimate road boundary and the selection method of candidate path to minimize the problem of zigzag driving based on Bayesian probability reasoning. Field test is conducted with scenarios in rough environment in which bush, tree and unpaved road are included and the performance of proposed method is validated.
When a pedagogical agent system aims to provide students with interactive help, it needs to know what knowledge the student has and what goals the student is currently trying to achieve. That is, it must do both assessment and plan recognition. These modeling tasks involve a high level of uncertainty when students are allowed to follow various lines of reasoning and are not required to show all their reasoning explicitly. In this paper, the student model for interactive edutainment applications is proposed. This model is based on Bayesian Networks to expose constructs and parameters of rules and propositions pertaining to game and problem solving activities. This student model could be utilized as the emotion generation model for student and agent as well.
최근 통신 기술의 발달로 공간 내 환경 자극을 나타내는 다양한 센서 데이터 수집이 가능해졌다. 베이지안 네트워크는 추론 근거를 확률적으로 고려함으로써 센서 데이터의 불확실하고 불완전한 특성을 보완할 수 있다. 본 논문은 환경 자극의 심리적 영향력을 고려하여 설계된 모듈형 베이지안 네트워크 기반 대중 감성 예측 시스템을 제안한다. 또한 단일 베이지안 네트워크를 모듈화하여 공간 내 환경 자극 변동의 유연한 대응 및 효율적 추론을 수행하였다. 시스템의 성능 검증을 위해 유치원 공간에서 수집된 조도, 음량, 온도, 습도, 색 온도, 음향, 향기, 대중 감성 데이터를 기반으로 대중 감성을 예측하였다. 실험 결과, 제안하는 방법의 예측 정확도는 85%로 여타 분류 기법보다 높은 성능을 나타내었다. 정량적, 정성적 분석을 통해 대중 감성 예측을 위한 확률 기반 방법론의 가능성 및 한계를 분석하였다.
사회고령화, 장애인구 증가는 장애인을 위해 특화된 서비스를 제공하기 위한 유비쿼터스 컴퓨팅 관련기술의 개발이 필요함을 나타낸다. 이를 위해 기존의 일방적인 관계가 아닌 사용자와 유비쿼터스 환경간의 상호작용이 지원되는 상황인식 및 서비스 추론 기술의 개발이 필요하다. 기존의 상황인식과 관련 연구는 불확실한 실세계를 도메인으로 하기 때문에 전문가 시스템을 바탕으로 베이지안 네트워크(이하, BN)와 같은 확률 기반 표현 모델을 통해 주어진 상황을 인식하였다. 본 논문에서는 다변화하는 환경과 사용자나 개발자의 개입을 최소화한 상태에서의 상황인식을 고려하여 장애활동보조 서비스 어플리케이션 도메인을 정의하고 온톨로지를 기반으로 상황정보 모델을 정의한다. 결정된 상황정보모델을 이용해 BN의 구조학습을 적용한 후 응용서비스 개발의 차원에서 장애인을 위한 서비스, Activity를 결정한다. 최종적으로 BN의 Conditional Probability Table를 적절하게 정의한 후 주어지는 임의의 상황에서의 사용자의 Activity와 Service 상태변수 값을 확률 값을 표현함으로써 상황인식의 결과를 도출한다.
서비스 로봇의 물체 인식은 배달, 심부름 같은 로봇이 수행하는 대부분의 서비스를 위해 매우 중요하다. 기존의 방법은 산업 환경에서 기하학적 모델에 기반 하여 물체를 인식하였으나, 환경 조건이 변화하고 로봇의 이동이 발생하는 실내 환경에서는 로봇의 위치에 따라 영상 속에서 물체가 가려져 있거나 작을 수 있어 인식이 잘되지 않는 상황이 발생한다. 이러한 불확실한 상황을 해결하기 위해 본 논문에서는 영상에서 인식된 물체들을 컨텍스트 정보로 사용하여 관심 있는 물체의 존재를 추론하기 위한 방법을 제안한다. 이를 위해 베이지안 네트워크와 온톨로지를 함께 사용하여 확률적 프레임 안에서 도메인 지식을 모델링하기 위한 방법과 추론 모델의 확장을 위해 동적으로 베이지안 네트워크를 생성하고 추론하는 방법을 제안한다. 실험을 통해서 이러한 방법의 성능을 검증하였고 확률적 모델 안에서 귀납적 추론이 갖는 장점을 확인할 수 있었다.
본(本) 연구(硏究)에서는 베이지안 이론(理論)을 이용(利用)한 확률적(確率的) 추론방법(方法)을 도입하여 불확실한 정보(情報)에 그 불확실성(不確實性)을 고려해주고, 그러한 과정(過程)을 통하여 가설들에 대한 확실성(確實性)의 정도(程度)를 평가(評價)해주는 전문가(專門家) 대체 시스템을 위한 일종의 지식습득 과정(過程)을 전개하였다.
Bishop이 제안한 Generative Topographic Mapping(GTM)은 Kohonen이 제안한 자율 학습 신경망인 Self Organizing Maps(SOM)의 확률 버전이다. GTM은 데이터가 생성되는 확률 분포를 잠재 변수, 혹은 은닉 변수를 사용하여 모형화한다. 이것은 SOM에서는 구현될 수 없는 GTM만의 특징이며, 이러한 특징으로 인하여 SOM의 한계들을 극복할 수 있게 된다. 본 논문에서는 이러한 GTM 모형에 베이지안 학습(Bayesian learning)을 결합하여 작은 오분류율을 가지는 분류 알고리즘인 베이지안 GTM(Bayesian GTM)을 제안한다. 이 알고리즘은 기존의 GTM의 빠른 계산 처리 능력과 데이터에 대한 확률 분포, 그리고 베이지안 추론의 정확성을 이용하여 기존의 분류 알고리즘보다 우수한 결과를 얻게 된다. 본 논문에서는 기존의 분류 알고리즘에서 많이 실험하였다. 학습 데이터를 통하여 이를 확인하였다.
Bayesian network is a form of probabilistic graphical model. It incorporates human reasoning to deal with sparse data availability and to determine the probabilities of uncertain cases. In this research, bayesian network is adopted to model the problem of construction project cost. General information, time, cost, and material, the four main factors dominating the characteristic of construction costs, are incorporated into the model. This research presents verify a model that were conducted to illustrate the functionality and application of a decision support system for predicting the costs. The Markov Chain Monte Carlo (MCMC) method is applied to estimate parameter distributions. Furthermore, it is shown that not all the parameters are normally distributed. In addition, cost estimates based on the Gibbs output is performed. It can enhance the decision the decision-making process.
인터넷 서비스의 급속한 발전으로 멀티미디어 데이타의 양이 크게 증가함에 따라, 이를 분석하여 유용한 정보를 얻기 위해 사용자 개개인에 초점을 맞춘 효율적인 검색기술이 필요하게 되었다. 하지만 최근 웹사이트에서 제공하는 사용자 모델링 서비스는 텍스트 기반 페이지 구성이나 추천 검색 등에만 국한되어 있는 단점이 있다. 본 논문에서는 사용자 모델링 기법을 동영상 검색에 적용하기 위해 사용자의 선호도를 베이지안 네트워크로 모델링하고, 추론된 확률 값을 검색에 반영하는 방법을 제안한다. 이를 위해 실제 연구실 환경 내에 존재하는 컨텍스트 정보를 정의하였고, 설치된 카메라로부터 얻어진 동영상이 포함하는 컨텍스트 정보를 텍스트의 형태로 주석을 달았다. 사용자로부터 입력받은 사용자 개인의 정보는 설계된 베이지안 네트워크 모델의 증거 값으로 사용되어, 그로부터 사용자의 선호도를 추론하도록 하였다. 베이지안 네트워크의 추론 결과로 얻어진 확률 값은 검색에 반영되어 각 사용자의 선호도에 맞는 검색 결과를 보여준다. 사용자 평가 결과, 제안하는 모델을 사용하여 선택된 결과의 만족도가 일반적인 검색의 결과에 비해 높음을 확인하였다.
It was already realized at a current technological level of home network systems that the systems recognizes a user's simple order and carry out the order in the ubiquitous computing environment. However home is not a simple environment consisting into a large number of family members, so various order and situation would be needed accordingly. From now on we need to reach the technological level to infer that how is the user's behavior patterns and what kinds of service is the fittest to user who belong to the ubiquitous computing environment by using the result of the context interpreter. In this regards, active inferred-model needs to be suggested upgrading user's command into one step more higher level than the simple one adapting diversified feature. This study would like to suggest this active model recognizing context, which is user's environmental information applying basic network and inferring Context-based Service that user wants through the recognized result This study proposes a new method that can infer the user's desire in ubiquitous computing environment. First of all, we define a context as user's information of ubiquitous computing environment situation that user belongs to and we classify the context into 4W1H(Where, Who, When, What) formats. We construct Bayesian network and put the factor of context use as Bayesian network nodes. As a result, we can infer the user's behavior pattern and most proper service for user in the intelligent space from the probabilistic result of Bayesian network.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.