• 제목/요약/키워드: Bayesian Reasoning

검색결과 42건 처리시간 0.029초

야지환경의 비포장도로용 지역경로계획 (Local Path Plan for Unpaved Road in Rough Environment)

  • 이영일;최덕선;박용운
    • 한국군사과학기술학회지
    • /
    • 제16권6호
    • /
    • pp.726-732
    • /
    • 2013
  • It is required for UGV(Unmanned Ground Vehicle) to have a LPP(Local Path Plan) component which generate a local path via the center of road by analyzing binary map to travel autonomously unpaved road in rough environment. In this paper, we present the method of boundary estimation for unpaved road and a local path planning method based on RANGER algorithm using the estimated boundary. In specially, the paper presents an approach to estimate road boundary and the selection method of candidate path to minimize the problem of zigzag driving based on Bayesian probability reasoning. Field test is conducted with scenarios in rough environment in which bush, tree and unpaved road are included and the performance of proposed method is validated.

Prototyping a Student Model for Educational Games

  • Choi, Young-Mee;Choo, Moon-Won;Chin, Seong-Ah
    • Journal of Information Processing Systems
    • /
    • 제1권1호
    • /
    • pp.107-111
    • /
    • 2005
  • When a pedagogical agent system aims to provide students with interactive help, it needs to know what knowledge the student has and what goals the student is currently trying to achieve. That is, it must do both assessment and plan recognition. These modeling tasks involve a high level of uncertainty when students are allowed to follow various lines of reasoning and are not required to show all their reasoning explicitly. In this paper, the student model for interactive edutainment applications is proposed. This model is based on Bayesian Networks to expose constructs and parameters of rules and propositions pertaining to game and problem solving activities. This student model could be utilized as the emotion generation model for student and agent as well.

모듈형 베이지안 네트워크 기반 대중 감성 예측 시스템 (Group Emotion Prediction System based on Modular Bayesian Networks)

  • 최슬기;조성배
    • 정보과학회 논문지
    • /
    • 제44권11호
    • /
    • pp.1149-1155
    • /
    • 2017
  • 최근 통신 기술의 발달로 공간 내 환경 자극을 나타내는 다양한 센서 데이터 수집이 가능해졌다. 베이지안 네트워크는 추론 근거를 확률적으로 고려함으로써 센서 데이터의 불확실하고 불완전한 특성을 보완할 수 있다. 본 논문은 환경 자극의 심리적 영향력을 고려하여 설계된 모듈형 베이지안 네트워크 기반 대중 감성 예측 시스템을 제안한다. 또한 단일 베이지안 네트워크를 모듈화하여 공간 내 환경 자극 변동의 유연한 대응 및 효율적 추론을 수행하였다. 시스템의 성능 검증을 위해 유치원 공간에서 수집된 조도, 음량, 온도, 습도, 색 온도, 음향, 향기, 대중 감성 데이터를 기반으로 대중 감성을 예측하였다. 실험 결과, 제안하는 방법의 예측 정확도는 85%로 여타 분류 기법보다 높은 성능을 나타내었다. 정량적, 정성적 분석을 통해 대중 감성 예측을 위한 확률 기반 방법론의 가능성 및 한계를 분석하였다.

장애인을 위한 상황인식 및 서비스 추론기술 개발 (Development of Context Awareness and Service Reasoning Technique for Handicapped People)

  • 고광은;신동준;심귀보
    • 한국지능시스템학회논문지
    • /
    • 제18권4호
    • /
    • pp.512-517
    • /
    • 2008
  • 사회고령화, 장애인구 증가는 장애인을 위해 특화된 서비스를 제공하기 위한 유비쿼터스 컴퓨팅 관련기술의 개발이 필요함을 나타낸다. 이를 위해 기존의 일방적인 관계가 아닌 사용자와 유비쿼터스 환경간의 상호작용이 지원되는 상황인식 및 서비스 추론 기술의 개발이 필요하다. 기존의 상황인식과 관련 연구는 불확실한 실세계를 도메인으로 하기 때문에 전문가 시스템을 바탕으로 베이지안 네트워크(이하, BN)와 같은 확률 기반 표현 모델을 통해 주어진 상황을 인식하였다. 본 논문에서는 다변화하는 환경과 사용자나 개발자의 개입을 최소화한 상태에서의 상황인식을 고려하여 장애활동보조 서비스 어플리케이션 도메인을 정의하고 온톨로지를 기반으로 상황정보 모델을 정의한다. 결정된 상황정보모델을 이용해 BN의 구조학습을 적용한 후 응용서비스 개발의 차원에서 장애인을 위한 서비스, Activity를 결정한다. 최종적으로 BN의 Conditional Probability Table를 적절하게 정의한 후 주어지는 임의의 상황에서의 사용자의 Activity와 Service 상태변수 값을 확률 값을 표현함으로써 상황인식의 결과를 도출한다.

서비스 로봇의 가려진 물체 인식을 위한 온톨로지 기반 동적 베이지안 네트워크 모델링 및 추론 (Dynamic Bayesian Network Modeling and Reasoning Based on Ontology for Occluded Object Recognition of Service Robot)

  • 송윤석;조성배
    • 한국정보과학회논문지:컴퓨팅의 실제 및 레터
    • /
    • 제13권2호
    • /
    • pp.100-109
    • /
    • 2007
  • 서비스 로봇의 물체 인식은 배달, 심부름 같은 로봇이 수행하는 대부분의 서비스를 위해 매우 중요하다. 기존의 방법은 산업 환경에서 기하학적 모델에 기반 하여 물체를 인식하였으나, 환경 조건이 변화하고 로봇의 이동이 발생하는 실내 환경에서는 로봇의 위치에 따라 영상 속에서 물체가 가려져 있거나 작을 수 있어 인식이 잘되지 않는 상황이 발생한다. 이러한 불확실한 상황을 해결하기 위해 본 논문에서는 영상에서 인식된 물체들을 컨텍스트 정보로 사용하여 관심 있는 물체의 존재를 추론하기 위한 방법을 제안한다. 이를 위해 베이지안 네트워크와 온톨로지를 함께 사용하여 확률적 프레임 안에서 도메인 지식을 모델링하기 위한 방법과 추론 모델의 확장을 위해 동적으로 베이지안 네트워크를 생성하고 추론하는 방법을 제안한다. 실험을 통해서 이러한 방법의 성능을 검증하였고 확률적 모델 안에서 귀납적 추론이 갖는 장점을 확인할 수 있었다.

확률적(確率的) 추론(推論)에 관한 고찰(考察) (An Overview of Probabilistic Reasoning)

  • 김성혁
    • 정보관리연구
    • /
    • 제21권1호
    • /
    • pp.34-52
    • /
    • 1990
  • 본(本) 연구(硏究)에서는 베이지안 이론(理論)을 이용(利用)한 확률적(確率的) 추론방법(方法)을 도입하여 불확실한 정보(情報)에 그 불확실성(不確實性)을 고려해주고, 그러한 과정(過程)을 통하여 가설들에 대한 확실성(確實性)의 정도(程度)를 평가(評價)해주는 전문가(專門家) 대체 시스템을 위한 일종의 지식습득 과정(過程)을 전개하였다.

  • PDF

확률적 자율 학습을 위한 베이지안 모델 (Bayesian Model for Probabilistic Unsupervised Learning)

  • 최준혁;김중배;김대수;임기욱
    • 한국지능시스템학회논문지
    • /
    • 제11권9호
    • /
    • pp.849-854
    • /
    • 2001
  • Bishop이 제안한 Generative Topographic Mapping(GTM)은 Kohonen이 제안한 자율 학습 신경망인 Self Organizing Maps(SOM)의 확률 버전이다. GTM은 데이터가 생성되는 확률 분포를 잠재 변수, 혹은 은닉 변수를 사용하여 모형화한다. 이것은 SOM에서는 구현될 수 없는 GTM만의 특징이며, 이러한 특징으로 인하여 SOM의 한계들을 극복할 수 있게 된다. 본 논문에서는 이러한 GTM 모형에 베이지안 학습(Bayesian learning)을 결합하여 작은 오분류율을 가지는 분류 알고리즘인 베이지안 GTM(Bayesian GTM)을 제안한다. 이 알고리즘은 기존의 GTM의 빠른 계산 처리 능력과 데이터에 대한 확률 분포, 그리고 베이지안 추론의 정확성을 이용하여 기존의 분류 알고리즘보다 우수한 결과를 얻게 된다. 본 논문에서는 기존의 분류 알고리즘에서 많이 실험하였다. 학습 데이터를 통하여 이를 확인하였다.

  • PDF

Bayesian Model for Cost Estimation of Construction Projects

  • Kim, Sang-Yon
    • 한국건축시공학회지
    • /
    • 제11권1호
    • /
    • pp.91-99
    • /
    • 2011
  • Bayesian network is a form of probabilistic graphical model. It incorporates human reasoning to deal with sparse data availability and to determine the probabilities of uncertain cases. In this research, bayesian network is adopted to model the problem of construction project cost. General information, time, cost, and material, the four main factors dominating the characteristic of construction costs, are incorporated into the model. This research presents verify a model that were conducted to illustrate the functionality and application of a decision support system for predicting the costs. The Markov Chain Monte Carlo (MCMC) method is applied to estimate parameter distributions. Furthermore, it is shown that not all the parameters are normally distributed. In addition, cost estimates based on the Gibbs output is performed. It can enhance the decision the decision-making process.

사무실 이벤트 검색을 위한 베이지안 네트워크 기반 사용자 선호도 모델링 (Modeling User Preference based on Bayesian Networks for Office Event Retrieval)

  • 임수정;박한샘;조성배
    • 한국정보과학회논문지:컴퓨팅의 실제 및 레터
    • /
    • 제14권6호
    • /
    • pp.614-618
    • /
    • 2008
  • 인터넷 서비스의 급속한 발전으로 멀티미디어 데이타의 양이 크게 증가함에 따라, 이를 분석하여 유용한 정보를 얻기 위해 사용자 개개인에 초점을 맞춘 효율적인 검색기술이 필요하게 되었다. 하지만 최근 웹사이트에서 제공하는 사용자 모델링 서비스는 텍스트 기반 페이지 구성이나 추천 검색 등에만 국한되어 있는 단점이 있다. 본 논문에서는 사용자 모델링 기법을 동영상 검색에 적용하기 위해 사용자의 선호도를 베이지안 네트워크로 모델링하고, 추론된 확률 값을 검색에 반영하는 방법을 제안한다. 이를 위해 실제 연구실 환경 내에 존재하는 컨텍스트 정보를 정의하였고, 설치된 카메라로부터 얻어진 동영상이 포함하는 컨텍스트 정보를 텍스트의 형태로 주석을 달았다. 사용자로부터 입력받은 사용자 개인의 정보는 설계된 베이지안 네트워크 모델의 증거 값으로 사용되어, 그로부터 사용자의 선호도를 추론하도록 하였다. 베이지안 네트워크의 추론 결과로 얻어진 확률 값은 검색에 반영되어 각 사용자의 선호도에 맞는 검색 결과를 보여준다. 사용자 평가 결과, 제안하는 모델을 사용하여 선택된 결과의 만족도가 일반적인 검색의 결과에 비해 높음을 확인하였다.

상황 정보 기반 사용자 요구 서비스 추론 모델 (Context based User Required Services Reasoning Model)

  • 고광은;심귀보
    • 제어로봇시스템학회논문지
    • /
    • 제14권1호
    • /
    • pp.21-26
    • /
    • 2008
  • It was already realized at a current technological level of home network systems that the systems recognizes a user's simple order and carry out the order in the ubiquitous computing environment. However home is not a simple environment consisting into a large number of family members, so various order and situation would be needed accordingly. From now on we need to reach the technological level to infer that how is the user's behavior patterns and what kinds of service is the fittest to user who belong to the ubiquitous computing environment by using the result of the context interpreter. In this regards, active inferred-model needs to be suggested upgrading user's command into one step more higher level than the simple one adapting diversified feature. This study would like to suggest this active model recognizing context, which is user's environmental information applying basic network and inferring Context-based Service that user wants through the recognized result This study proposes a new method that can infer the user's desire in ubiquitous computing environment. First of all, we define a context as user's information of ubiquitous computing environment situation that user belongs to and we classify the context into 4W1H(Where, Who, When, What) formats. We construct Bayesian network and put the factor of context use as Bayesian network nodes. As a result, we can infer the user's behavior pattern and most proper service for user in the intelligent space from the probabilistic result of Bayesian network.