• Title/Summary/Keyword: Bayesian Probability Statistics

Search Result 110, Processing Time 0.019 seconds

Bayesian estimation for Rayleigh models

  • Oh, Ji Eun;Song, Joon Jin;Sohn, Joong Kweon
    • Journal of the Korean Data and Information Science Society
    • /
    • v.28 no.4
    • /
    • pp.875-888
    • /
    • 2017
  • The Rayleigh distribution has been commonly used in life time testing studies of the probability of surviving until mission time. We focus on a reliability function of the Rayleigh distribution and deal with prior distribution on R(t). This paper is an effort to obtain Bayes estimators of rayleigh distribution with three different prior distribution on the reliability function; a noninformative prior, uniform prior and inverse gamma prior. We have found the Bayes estimator and predictive density function of a future observation y with each prior distribution. We compare the performance of the Bayes estimators under different sample size and in simulation study. We also derive the most plausible region, prediction intervals for a future observation.

Characteristics of Problem on the Area of Probability and Statistics for the Korean College Scholastic Aptitude Test

  • Lee, Kang-Sup;Kim, Jong-Gyu;Hwang, Dong-Jou
    • Research in Mathematical Education
    • /
    • v.11 no.4
    • /
    • pp.275-283
    • /
    • 2007
  • In this study, we gave 132 high school students fifteen probabilities and nine statistics problems of the Korean College Scholastic Aptitude Test and then analyzed their answer using the classical test theory and the item response theory. Using the classical test theory (the Testian 1.0) we get the item reliability ($0.730 \sim 0.765$), and using the item response theory (the Bayesian 1.0) we get the item difficulty ( $-2.32\sim0.83$ ) and discrimination ( $0.55\sim 2.71$). From results, we find out what and why students could not understand well.

  • PDF

Different estimation methods for the unit inverse exponentiated weibull distribution

  • Amal S Hassan;Reem S Alharbi
    • Communications for Statistical Applications and Methods
    • /
    • v.30 no.2
    • /
    • pp.191-213
    • /
    • 2023
  • Unit distributions are frequently used in probability theory and statistics to depict meaningful variables having values between zero and one. Using convenient transformation, the unit inverse exponentiated weibull (UIEW) distribution, which is equally useful for modelling data on the unit interval, is proposed in this study. Quantile function, moments, incomplete moments, uncertainty measures, stochastic ordering, and stress-strength reliability are among the statistical properties provided for this distribution. To estimate the parameters associated to the recommended distribution, well-known estimation techniques including maximum likelihood, maximum product of spacings, least squares, weighted least squares, Cramer von Mises, Anderson-Darling, and Bayesian are utilised. Using simulated data, we compare how well the various estimators perform. According to the simulated outputs, the maximum product of spacing estimates has lower values of accuracy measures than alternative estimates in majority of situations. For two real datasets, the proposed model outperforms the beta, Kumaraswamy, unit Gompartz, unit Lomax and complementary unit weibull distributions based on various comparative indicators.

The Weighted Polya Posterior Confidence Interval For the Difference Between Two Independent Proportions (독립표본에서 두 모비율의 차이에 대한 가중 POLYA 사후분포 신뢰구간)

  • Lee Seung-Chun
    • The Korean Journal of Applied Statistics
    • /
    • v.19 no.1
    • /
    • pp.171-181
    • /
    • 2006
  • The Wald confidence interval has been considered as a standard method for the difference of proportions. However, the erratic behavior of the coverage probability of the Wald confidence interval is recognized in various literatures. Various alternatives have been proposed. Among them, Agresti-Caffo confidence interval has gained the reputation because of its simplicity and fairly good performance in terms of coverage probability. It is known however, that the Agresti-Caffo confidence interval is conservative. In this note, a confidence interval is developed using the weighted Polya posterior which was employed to obtain a confidence interval for the binomial proportion in Lee(2005). The resulting confidence interval is simple and effective in various respects such as the closeness of the average coverage probability to the nominal confidence level, the average expected length and the mean absolute error of the coverage probability. Practically it can be used for the interval estimation of the difference of proportions for any sample sizes and parameter values.

Interval Estimation for a Binomial Proportion Based on Weighted Polya Posterior (이항 비율의 가중 POLYA POSTERIOR 구간추정)

  • Lee Seung-Chun
    • The Korean Journal of Applied Statistics
    • /
    • v.18 no.3
    • /
    • pp.607-615
    • /
    • 2005
  • Recently the interval estimation of a binomial proportion is revisited in various literatures. This is mainly due to the erratic behavior of the coverage probability of the will-known Wald confidence interval. Various alternatives have been proposed. Among them, Agresti-Coull confidence interval has been recommended by Brown et al. (2001) with other confidence intervals for large sample, say n $\ge$ 40. On the other hand, a noninformative Bayesian approach called Polya posterior often produces statistics with good frequentist's properties. In this note, an interval estimator is developed using weighted Polya posterior. The resulting interval estimator is essentially the Agresti-Coull confidence interval with some improved features. It is shown that the weighted Polys posterior produce an effective interval estimator for small sample size and a severely skewed binomial distribution.

Theoretical Considerations for the Agresti-Coull Type Confidence Interval in Misclassified Binary Data (오분류된 이진자료에서 Agresti-Coull유형의 신뢰구간에 대한 이론적 고찰)

  • Lee, Seung-Chun
    • Communications for Statistical Applications and Methods
    • /
    • v.18 no.4
    • /
    • pp.445-455
    • /
    • 2011
  • Although misclassified binary data occur frequently in practice, the statistical methodology available for the data is rather limited. In particular, the interval estimation of population proportion has relied on the classical Wald method. Recently, Lee and Choi (2009) developed a new confidence interval by applying the Agresti-Coull's approach and showed the efficiency of their proposed confidence interval numerically, but a theoretical justification has not been explored yet. Therefore, a Bayesian model for the misclassified binary data is developed to consider the Agresti-Coull confidence interval from a theoretical point of view. It is shown that the Agresti-Coull confidence interval is essentially a Bayesian confidence interval.

Rapid seismic vulnerability assessment by new regression-based demand and collapse models for steel moment frames

  • Kia, M.;Banazadeh, M.;Bayat, M.
    • Earthquakes and Structures
    • /
    • v.14 no.3
    • /
    • pp.203-214
    • /
    • 2018
  • Predictive demand and collapse fragility functions are two essential components of the probabilistic seismic demand analysis that are commonly developed based on statistics with enormous, costly and time consuming data gathering. Although this approach might be justified for research purposes, it is not appealing for practical applications because of its computational cost. Thus, in this paper, Bayesian regression-based demand and collapse models are proposed to eliminate the need of time-consuming analyses. The demand model developed in the form of linear equation predicts overall maximum inter-story drift of the lowto mid-rise regular steel moment resisting frames (SMRFs), while the collapse model mathematically expressed by lognormal cumulative distribution function provides collapse occurrence probability for a given spectral acceleration at the fundamental period of the structure. Next, as an application, the proposed demand and collapse functions are implemented in a seismic fragility analysis to develop fragility and consequently seismic demand curves of three example buildings. The accuracy provided by utilization of the proposed models, with considering computation reduction, are compared with those directly obtained from Incremental Dynamic analysis, which is a computer-intensive procedure.

Bayesian Analysis for the Error Variance in a Two-Way Mixed-Effects ANOVA Model Using Noninformative Priors (무정보 사전분포를 이용한 이원배치 혼합효과 분산분석모형에서 오차분산에 대한 베이지안 분석)

  • 장인홍;김병휘
    • The Korean Journal of Applied Statistics
    • /
    • v.15 no.2
    • /
    • pp.405-414
    • /
    • 2002
  • We consider the problem of estimating the error variance of in a two-way mixed-effects ANOVA model using noninformative priors. First, we derive Jeffreys' prior, a reference prior, and matching priors. We then provide marginal posterior distributions under those noninformative priors. Finally, we provide graphs of marginal posterior densities of the error variance and credible intervals for the error variance in two real data set and compare these credible intervals.

Comparison Of Interval Estimation For Relative Risk Ratio With Rare Events

  • Kim, Yong Dai;Park, Jin-Kyung
    • Communications for Statistical Applications and Methods
    • /
    • v.11 no.1
    • /
    • pp.181-187
    • /
    • 2004
  • One of objectives in epidemiologic studies is to detect the amount of change caused by a specific risk factor. Risk ratio is one of the most useful measurements in epidemiology. When we perform the inference for this measurement with rare events, the standard approach based on the normal approximation may fail, in particular when there are no disease cases observed. In this paper, we discuss and evaluate several existing methods for constructing a confidence interval of risk ratio through simulation when the disease of interest is a rare event. The results in this paper provide guidance with how to construct interval estimates for risk difference and risk ratio when there are no disease cases observed.

On Estimation of HPD Interval for the Generalized Variance Using a Weighted Monte Carlo Method

  • Kim, Hea-Jung
    • Communications for Statistical Applications and Methods
    • /
    • v.9 no.2
    • /
    • pp.305-313
    • /
    • 2002
  • Regarding to inference about a scalar measure of internal scatter of Ρ-variate normal population, this paper considers an interval estimation of the generalized variance, │$\Sigma$│. Due to complicate sampling distribution, fully parametric frequentist approach for the interval estimation is not available and thus Bayesian method is pursued to calculate the highest probability density (HPD) interval for the generalized variance. It is seen that the marginal posterior distribution of the generalized variance is intractable, and hence a weighted Monte Carlo method, a variant of Chen and Shao (1999) method, is developed to calculate the HPD interval of the generalized variance. Necessary theories involved in the method and computation are provided. Finally, a simulation study is given to illustrate and examine the proposed method.