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Abstract

The Rayleigh distribution has been commonly used in life time testing studies of
the probability of surviving until mission time. We focus on a reliability function of the
Rayleigh distribution and deal with prior distribution on R(t). This paper is an effort to
obtain Bayes estimators of rayleigh distribution with three different prior distribution
on the reliability function; a noninformative prior, uniform prior and inverse gamma
prior. We have found the Bayes estimator and predictive density function of a future
observation y with each prior distribution. We compare the performance of the Bayes
estimators under different sample size and in simulation study. We also derive the most
plausible region, prediction intervals for a future observation.

Keywords: Bayes estimator, inversed gamma prior, predictive distribution, predict in-
tervals.

1. Introduction

The Rayleigh distribution is a suitable model for life testing studies. Polovko (1968),
Dyer and Whisenand (1973), demonstrated the importance of this distribution in electro
vacuum devices and communication engineering. Howlader and Hossian (1995) obtained
Bayes estimators for the scale parameter and the reliability function, R(t), in the case of
type-II censored sampling. Lalitha and Anand (1996) used the modified maximum likelihood
to estimate the scale parameter of the Rayleigh distribution. Mazloum (1997) concerned with
the problem of estimating the scale parameter and the reliability under type-II censoring.
Meintanis and Iliopoulos (2003) proposed a class of goodness of fit tests for the Rayleigh
distribution. Abd Elfattah et al. (2006) studied the efficiency of maximum likelihood estimate
of the parameter of Rayleigh distribution under three cases, type-I, type-II and progressive
type-II censored sampling schemes.
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Dey and Dey (2012) obtained Bayes estimators of Rayleigh parameter and its associated
risk based on the extended jeffrey’s prior and conjugate prior (square root inverted gamma
prior) with respect to both symmetric loss function (squared error loss), and asymmetric
loss function (precautionary loss function). They also derive the highest posterior density
(HPD) interval for the Rayleigh parameter as well as the HPD prediction intervals for a
future observation from this distribution. An illustrative example to test how the Rayleigh
distribution fits a real data set is presented.

Ahmed et al. (2013) consider the estimation of the parameter of Rayleigh distribution.
Bayes estimator is obtained by using Jeffreys and extension of Jeffreys prior under squared
error loss function and Al-Bayyatis loss function.

We focus on Bayesian estimation of the parameter of the Rayleigh model using three
different prior which is a noninformative prior distribution, uniform prior distribution and
inverse gamma prior distribution on the reliability function R(t) = P (X > t). We also
interested in evaluating the each predictive Bayes estimator with their MSE.

Let X = (X1, X2, · · · , Xn) be an observed random sample of size n from the Rayleigh
distribution, where σ is a scale parameter. Let Y be a future observation from the same
distribution function. Let Π(σ) be a prior distribution of σ and also Π(σ|X) be the posterior
distribution of σ given X = x. Then the predictive density function, f(y|x), for a future
observation y will be obtained by

f(y|x) = Ψ

∫
∑ f(y|σ)Π(σ|x)dσ.

where
∑

is the range space of σ and Ψ is the normalizing constant.
So the idea of Bayesian predictive inference is the average of the likelihood of a future

observation based on updated posterior density of σ given X = x.
The 100(1 − α)% equal-tail most plausible region (cL, cU ) for a future observation y is

obtained by solving the following equation.

∫ cL

−∞
f(y|x)dy =

α

2
.

The 100(1 − α)% most plausible region (cL, cU ) is said to be a Bayesian most plausible
region of cover κ if (cL, cU ) has the form

(cL, cU ) = y : f(y|x) ≥ α,

where α is determined by

f((cL, cU )|x) = κ.

In section2, one derive the predictive density, Bayes predictive estimator and most plau-
sible region of a future observation. As a prior distribution on the reliability function
R(t) = P (X > t), one consider a non-informative prior, a locally uniform prior and a
inversed gamma prior distribution.

In section3, using some Monte Carlo simulation results we consider the performances of
Bayes estimator and study the prior-robustness.

In section4, we conclude the paper.
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2. Bayesian prediction analysis under several priors

2.1. Non-informative prior case

For the Bayesian setting, two major components are required. First, the prior distribution
of the unknown parameter of the model and second, the risk function to estimate the risk
associated with the estimation of the parameter. The hazard function of this distribution is
an increasing function in x, which is interest in the life testing problem. Thus this could be
suitable for life testing experiments on components which age with time in that way.

For the Rayleigh model, the reliability function θ at a specified ‘mission’ time t > 0 is
given by

θ = P (X > t) = exp(− t
2

2
), t > 0.

Let X = (X1, X2, · · · , Xn) be a random sample from the Rayleigh model with probability
density function given. Then the likelihood function is given by

L(σ|X̄) =
1

σ2n

(
n∏
i=1

Xi

)
exp

(
−

n∑
i=1

X2
i

2σ2

)
, 0 < σ, 0 < Xi <∞, i = 1, 2, · · · , n. (2.1)

The likelihood function of θ, which can be obtained from (2.1) by letting σ2 = −t2/(2logθ)
is

L(θ|X) =

(
−2logθ

t2

)n( n∏
i=1

Xi

)
exp

(
n∑
i=1

X2
i

t2
logθ

)

∝ (−logθ)
n

exp

(
n∑
i=1

X2
i

t2
logθ

)
, 0 < θ < 1.

Here one consider the Jefferey’s noninformative prior distribution for θ. When the mission
time t is given, the noninformative prior distribution π(θ) for θ is

Π(θ) ∝ I(θ)
1
2 = − 1

(θlogθ)
,

where

I(θ) = −E
[
∂2

∂θ2
logL(θ|X)

]
= − 1

θ2(logθ)2
, 0 < θ < 1

and I(θ) is the Fisher’s information.
By the properties of the invariance under parametric transformations, the Bayesian pre-

dictive densities under noninformative prior distribution for θ and σ are equivalent.
Now one derive predictive density distribution which is given in the following theorem.
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Theorem 2.1 Under the noninformative prior distribution for θ, the Bayesian predictive
density of future observation y is given by

f(y|x) =
2ny

(∑n
i=1 x

2
i

)n
(
∑n
i=1 x

2
i + y2)

n+1 , 0 < y <∞. (2.2)

Proof : The posterior density of θ given X = x is

Π(θ|x) =
1

Γ(n)

(
n∑
i=1

x2
i

t2

)n
(−logθ)n−1θ

(∑n
i=1

x2
i

t2
−1

)
, 0 < θ < 1.

Then one have

f(y|x) =

∫ 1

0

Π(θ|x)f(y|θ)dθ.

Letting Φ = 1
Γ(n)

(∑n
i=1

x2
i

t2

)n (
2y
t2

)
and Z = −logθ,

f(y|x) = Φ

∫ ∞
0

zne
−z
(∑n

i=1 x2
i+y2

t2

)
dz, 0 < z <∞. (2.3)

With the aid of Gamma kernel,

∫ ∞
0

zne
−z
(∑n

i=1 x2
i+y2

t2

)
dz = Γ(n+ 1)

(
t2∑n

i=1 x
2
i + y2

)n+1

,

the equation (2.3) becomes

n

(
n∑
i=1

x2
i

t2

)n(
2y

t2

)(
t2∑n

i=1 x
2
i + y2

)n+1

=
2ny(

∑n
i=1 x

2
i )
n

(
∑n
i=1 x

2
i + y2)n+1

.

The proof is completed. �

Now consider the Bayes predictive estimator and most plausible region for a future obser-
vation of the Rayleigh model under a noninformative prior distribution. In equation (2.2),
the Y 2 has an inverted beta distribution, denoted by InBe(1, n,

∑n
i=1 x

2
i ), where the inverted

beta distribution with parameter α, β and γ is defined by

f(z|α, β, γ) =
zα−1γβ

B(α, β)(z + γ)α+β
, z ≥ 0, α, β, γ > 0,

where B(α, β) =
∫ 1

0
tα−1(1− t)β−1dt = Γ(α)Γ(β)/Γ(α+ β).

The inverted beta distribution is also known as the distribution of a beta random variable
of the second kind, which is related to the F distribution.

Now let us consider to find the Bayes estimator and the most plausible region.
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Theorem 2.2 Under the squared-error loss, the Bayes predictive estimator of a future
observation Y is given by

ŶNI =
Γ( 3

2 )Γ(n− 1
2 )(
∑n
i=1 x

2
i )

1
2

Γ(n)
. (2.4)

Proof : Since the Bayes predictive estimator of Y is the predictive density mean with
squared error loss, it can be obtained as

ŶNI =E(y|x)

=

∫ ∞
0

2ny(
∑n
i=1 x

2
i )
n

(y2 +
∑n
i=1 x

2
i )
n+1

.

Letting Z = Y 2,

ŶNI =

∫ ∞
0

n(
∑n
i=1 x

2
i )
n
√
z

(z +
∑n
i=1 x

2
i )
n+1

dz

=n(

n∑
i=1

x2
i )

1
2B

(
3

2
, n− 1

2

)∫ ∞
0

√
z(
∑n
i=1 x

2
i )
n− 1

2

B
(

3
2 , n−

1
2

)
(z +

∑n
i=1 x

2
i )
n+1

dz,

where the Z has an inverted beta distribution, InBe( 3
2 , n−

1
2 ,
∑n
i=1 x

2
i ) and one can get the

result. This complete the proof. �

Now one consider the 100(1− α)% most plausible region (cL, cU ) for a future observation
Y . The predictive density f(y|x) is

f(y|x) =
2y(
∑
x2
i )
n

B(1, n)(y2 +
∑
x2
i )
n+1

,

where Z = Y 2 ∼ InBe(1, n,
∑
x2
i ) and B(1, n) = Γ(1)Γ(n)/Γ(1 + n), one can see that

∫ ∞
c2L

(
1 + z∑

x2
i

)−(n+1)

∑
x2
iB(1, n)

dz −
∫ ∞
c2U

(
1 + z∑

x2
i

)−(n+1)

∑
x2
iB(1, n)

dz = 1− α. (2.5)

By substituting 1
w = 1 + Z∑n

i=1 x
2
i
, equation (2.5) becomes

Ip1(n, 1)− Ip2(n, 1) = 1− α,

where Ix(a, b) is incomplete beta function

Ix(a, b) =
Bx(a, b)

B(a, b)
=

1

B(a, b)

∫ x

0

ta−1(1− t)b−1dt, a, b > 0,
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p1 ≡
∑n
i=1 x

2
i∑n

i=1 x
2
i + c2L

and

p2 ≡
∑n
i=1 x

2
i∑n

i=1 x
2
i + c2U .

The relationship between the incomplete beta function and the binomial distribution re-
sults in

( ∑n
i=1 x

2
i∑n

i=1 x
2
i + c2L

)n
−
( ∑n

i=1 x
2
i∑n

i=1 x
2
i + c2L

)n
= 1− α.

Thus the 100(1 − α)% most plausible region (cL, cU ) can be obtained by solving the
following equations :

( ∑n
i=1 x

2
i∑n

i=1 x
2
i + c2L

)n
−
( ∑n

i=1 x
2
i∑n

i=1 x
2
i + c2L

)n
= 1− α

and (
c2U +

∑n
i=1 x

2
i

c2L +
∑n
i=1 x

2
i

)n+1

=
cU
cL
.

2.2. Locally uniform prior case

In this section, we consider a locally uniform prior distribution, Uθ(0, 1) for θ with the
probability density function

Π(θ) = 1, 0 < θ < 1.

Then the posterior density of θ, given X = x is

Π(θ|x) =
1

Γ(n+ 1)

(
1 +

∑n
i=1 x

2
i

t2

)n+1

(−logθ)nexp

(∑n
i=1 x

2
i

t2
logθ

)
, 0 < θ < 1.

The following theorem can be obtained.

Theorem 2.3 Under the locally uniform prior distribution for , the Bayesian predictive
density of future observation Y is given by

f(y|x) =
2y(n+ 1)(t2 +

∑n
i=1 x

2
i )
n+1

(
∑n
i=1 x

2
i + y2 + t2)n+2

, 0 < y <∞.
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Proof : The predictive density of Y is obtained from

f(y|x) =

∫ 1

0

Π(θ|x)f(y|θ)dθ

and

f(y|x) = Ψ

∫ 1

0

(−logθ)n+1θ
−
(∑n

i=1 x2
i+y2

t2

)
dθ,

where Ψ is the normalizing constant. Thus by transforming Z = −logθ, one can obtain the
following results :

f(y|x) =
1

Γ(n+ 1)

(
1 +

∑n
i=1 x

2
i

t2

)(
2y

t2

)∫ ∞
0

zn+1e
−z
(∑n

i=1 x2
i+y2+t2

t2

)
dz. (2.6)

By the Gamma kernel, the equation (2.6) is equal to

Γ(n+ 2)

Γ(n+ 1)

(
t2 + sumn

i=1x
2
i

t2

)n+1(
2y

t2

)(
t2

t2 +
∑n
i=1 x

2
i + y2

)n+2

=
2y(n+ 1)(t2 +

∑n
i=1 x

2
i )
n+1

(
∑n
i=1 x

2
i + y2 + t2)n+2

.

This completes the proof. �

One consider the Bayes predictive estimator and the most plausible region from a future
observation of the Rayleigh model with locally uniform prior distribution. Note that the
distribution of Y 2 has an inverted beta distribution, InBe(1, n+ 1, t2 +

∑n
i=1 x

2
i ).

Theorem 2.4 Under the squared error loss and a locally uniform prior distribution, the
Bayes predictive estimator of future observation Y is

ŶLU =
Γ( 3

2 )Γ(n+ 1
2 )

Γ(n+ 1)

(
t2 +

n∑
i=1

x2
i

) 1
2

.

Proof : By transforming Z = Y 2,

ŶLU =E(y|x)

=

∫ ∞
0

2y2(n+ 1)(t2 +
∑n
i=1 x

2
i )
n+1

(
∑n
i=1 x

2
i + t2 + y2)n+2

dy

=

∫ ∞
0

√
z(n+ 1)(t2 +

∑n
i=1 x

2
i )
n+1

(
∑n
i=1 x

2
i + t2 + z)n+2

dz.
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The Z has an inverted beta distribution, InBe( 3
2 , n+ 1

2 , t
2 +

∑n
i=1 x

2
i ).

ŶLU =(n+ 1)

(
t2 +

n∑
i=1

x2
i

) 1
2

B

(
3

2
, n+

1

2

)
×
∫ ∞

0

√
z(t2 +

∑n
i=1 x

2
i )
n+1

B
(

3
2 , n+ 1

2

)
(t2 +

∑n
i=1 x

2
i + z)n+2

dz

=
Γ
(

3
2

)
Γ
(
n+ 1

2

)
Γ(n+ 2)(n+ 1)(t2 +

∑n
i=1 x

2
i )

1
2

.

Thus the theorem holds. �

Now consider the 100(1 − α)% most plausible region (cL, cU ) for Y under the locally
uniform prior distribution. The predictive density f(y|x) is

f(y|x) =
2y(t2 +

∑n
i=1 x

2
i )
n+1

B(1, n+ 1)(
∑n
i=1 x

2
i + t2 + y2)n+2

.

Since Z = Y 2 has a inverted beta distribution, InBe(1, n+ 1, t2 +
∑n
i=1 x

2
i ), P (cL < Y <

cU ) = P (c2L < Z < c2U ) = 1− α.
By the substitution of 1

w = 1 + Z∑n
i=1 x

2
i
,

P (c2L < Z < c2U ) = Ip1(n+ 1, 1)− Ip2(n+ 1, 1),

where Ipi(n+ 1, 1) is the incomplete beta function and

p1 ≡
t2 +

∑n
i=1 x

2
i

t2 +
∑n
i=1 x

2
i + c2L

,

p2 ≡
t2 +

∑n
i=1 x

2
i

t2 +
∑n
i=1 x

2
i + c2U

.

From the relation between the incomplete beta function and the binomial distribution.
The 100(1−α)% most plausible region (cL, cU ) is the simultaneous solution of the following
two equations :

(
t2 +

∑n
i=1 x

2
i

t2 +
∑n
i=1 x

2
i + c2L

)n
−
(

t2 +
∑n
i=1 x

2
i

t2 +
∑n
i=1 x

2
i + c2U

)n
= 1− α (2.7)

and

(
t2 +

∑n
i=1 x

2
i + c2U

t2 +
∑n
i=1 x

2
i + c2L

)n+2

=
cU
cL
. (2.8)
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2.3. Inverse gamma prior case

In this section, we consider the inversed gamma prior distribution for θ with probability
density function. First the original inversed gamma prior distribution for σ is

π(σ) =
ab

2b−1Γ(b)
σ−(2b+1)exp

(
−a
2σ2

)
, a, b > 0, σ > 0

∝σ−(2b+1)exp

(
−a
2σ2

)
and substituting σ2 = − t2

2logθ ,

Π(θ) =

(
−2logθ

t2

)b+1

exp

(
alogθ

t2

)
=

(
2

t2

)b+1

(−logθ)exp
( a
t2

logθ
)
.

Then the posterior density of θ, given X = x is

Π(θ|x) =

(
2

t2

)b+1

(−logθ)n+b+1exp

(∑n
i=1 x

2
i + a

t2
logθ

)
.

Thus the following theorem can be obtained.

Theorem 2.5 Under the inversed gamma prior distribution for , the Bayesian predictive
density function of future observation Y is given by

f(y|x) =

(
2

t2

)b+1
2ny(

∑n
i=1 x

2
i + a)n

(
∑n
i=1 x

2
i + y2 + a)n+1

.

Proof : The predictive density of Y is obtained from

f(y|x) =

∫ 1

0

Π(θ|x)f(y|θ)dθ

and

f(y|x) = Ψ

∫ 1

0

(−logθ)n+b+2exp

(∑n
i=1 x

2
i + y2 + a

t2
logθ

)
dθ,

where Ψ is the normalizing constant. Thus by transforming Z = −logθ, one can obtained
the following results :

f(y|x) = Ψ

∫ ∞
0

(z)n+b+2e
−z
(∑n

i=1 x2
i+y2+a

t2

)
dz. (2.9)
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By the Gamma kernel, the equation (2.9) is equal to

(
2y

t2

)(
2

t2

)b+1

Γ(n+ 1)

(
t2∑n

i=1 x
2
i + y2 + a

)n+1

=

(
2

t2

)b+1
2ny(

∑n
i=1 x

2
i + a)n

(
∑n
i=1 x

2
i + y2 + a)n+1

.

This completes the proof. �

One consider the Bayes predictive estimator and the most plausible region from a future
observation of the Rayleigh model with Inversed gamma prior distribution. Note that the
distribution of Y 2 has an inverted beta distribution InBe(1, n,

∑n
i=1 x

2
i ).

Theorem 2.6 Under the squared error loss and inversed gamma prior distribution, the
Bayes predictive estimator of future observation Y is

ŶIG =
Γ
(

3
2

)
Γ
(
n− 1

2

)
Γ(n)

(
2

t2

)b+1
(

n∑
i=1

x2
i + a

) 1
2

.

Proof : By transforming Z = Y 2,

ŶLU =E(y|x)

=

(
2

t2

)b+1 ∫ ∞
0

2yn(a+
∑n
i=1 x

2
i )

(
∑n
i=1 x

2
i + a+ y2)n+1

dy

=

(
2

t2

)b+1 ∫ ∞
0

n(a+
∑n
i=1 x

2
i )
n
√
z

(
∑n
i=1 x

2
i + a+ z)n+1

dz

=

(
2

t2

)b+1

B

(
3

2
, n− 1

2

)∫ ∞
0

n(a+
∑n
i=1 x

2
i )
n− 1

2
√
z

B
(

3
2 , n−

1
2

)
(
∑n
i=1 x

2
i + a+ z)n+1

dz.

Thus the theorem holds. �

Now consider the 100(1 − α)% most plausible region (cL, cU ) for Y under the inversed
gamma prior distribution. The predictive density f(y|x) is

f(y|x) =

(
2

t2

)b+1
2ny(

∑n
i=1 x

2
i + a)n

(
∑n
i=1 x

2
i + y2 + a)n+1

.

Since Z = Y 2 has a inverted beta distribution, InBe(1, n, a +
∑n
i=1 x

2
i ), P (cL < Y <

cU ) = P (c2L < Z < c2U ) = 1− α.
By the substitution of 1

w = 1 + Z∑n
i=1 x

2
i
,
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P (c2L < Z < c2U ) = Ip1(n+ 1, 1)− Ip2(n+ 1, 1),

where Ipi(n+ 1, 1) is the incomplete beta function,

p1 ≡
a+

∑n
i=1 x

2
i

a+
∑n
i=1 x

2
i + c2L

and

p2 ≡
a+

∑n
i=1 x

2
i

a+
∑n
i=1 x

2
i + c2U

.

From the relation between the incomplete beta function and the binomial distribution.
The 100(1−α)% most plausible region (cL, cU ) is the simultaneous solution of the following
two equations :

(
a+

∑n
i=1 x

2
i

a+
∑n
i=1 x

2
i + c2L

)n
−
(

a+
∑n
i=1 x

2
i

a+
∑n
i=1 x

2
i + c2U

)n
= 1− α (2.10)

and (
a+

∑n
i=1 x

2
i + c2U

a+
∑n
i=1 x

2
i + c2L

)n+2

=
cU
cL
. (2.11)

3. Simulation study and discussion

In this section, we conduct a simulation experiments in order to assess the performances
of Bayes estimator of θ using the three different kinds of prior. The behavior of the Bayes
predictive estimator of future observation Y can evaluated by the MSE.

We simulated samples from the Rayleigh model with σ2 = 1 and σ2 = 2 using four different
sample sizes (n = 10, 30, 50, 100). We give the ‘mission time’ t = 1. All results are based on
1000 repetitions. In the Table 3.1 the Bayes estimators for the parameter is averaged over
the total number of repetitions with the specified time t = 2.

Table 3.1 shows that the Bayes estimator with non-informative prior case provides little
underestimated both case which is σ2 = 1 and σ2 = 2, even if sample size is quite large.
The Bayes estimator of two kinds of prior, uniform prior and inverse gamma prior are
almost identical results. For the inverse gamma prior case any dramatic difference is not
detected but the performance with the inverse gamma prior are generally better than those
of noninformative prior and uniform prior case.
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Table 3.1 Bayes predictive estimator of a future observation of y

σ2 = 1
n = 10 n = 30 n = 50 n = 100

ŶNI 1.820 1.802 1.785 1.774

ŶU 3.635 3.584 3.566 3.559

ŶIG 3.794 3.634 3.604 3.560
σ2 = 2

n = 10 n = 30 n = 50 n = 100

ŶNI 2.238 2.190 2.181 2.179

ŶU 4.360 4.386 4.360 4.351

ŶIG 4.630 4.416 4.390 4.368
* NI: Noninformative prior, U: Uniform prior

IG : Inverse gamma prior

In Table 3.2, the most plausible region for σ2 have been reported. We have analyzed these
interval for three different prior. As expected, it is observed that as the sample size increases,
the most plausible region becomes narrower. There is a little difference in the behavior of
the most plausible region depends on their Bayes estimator.

The intervals are more or less same for large sample except the noninformative case. There
is not much difference in the behavior of most plausible region when comparing Uniform prior
over Inverse gamma prior. One cannot say that the most plausible region are changed much
with respect to the significant change of the prior from a noninformative prior distribution to
a uniform prior distribution for σ, one can say that the most plausible regions are relatively
related to the change of the prior distribution.

Table 3.2 Most plausible region (cL, cU )

σ2 = 1
n = 10 n = 30 n = 50 n = 100

ŶNI (1.801, 1.838) (1.792, 1.812) (1.777, 1.793) (1.769, 1.778)

ŶU (3.599, 3.671) (3.564, 3.604) (3.550, 3.580) (3.548, 3.570)

ŶIG (3.761, 3.837) (3.614, 3.654) (3.589, 3.619) (3.549, 3.571)
σ2 = 2

n = 10 n = 30 n = 50 n = 100

ŶNI (2.221, 2.254) (2.181, 2.199) (2.174, 2.188) (2.174, 2.184)

ŶU (4.350, 4.370) (4.368, 4.404) (4.345, 4.373) (4.340, 4.361)

ŶIG (4.599, 4.661) (4.397, 4.434) (4.375, 4.403) (4.357, 4.378)
* NI: Noninformative prior, U: Uniform prior

IG : Inverse gamma prior

In Table 3.3, MSE of the Bayes predictive estimator of a future observation of y is not
much variation in behavior of MSE of the Bayes estimator and when sample size increase,
MSE is decrease.
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Table 3.3 MSE of the Bayes estimator

σ2 = 1
n = 10 n = 30 n = 50 n = 100

ŶNI .2936 .1600 .1272 .0848

ŶU .5791 .3236 .2456 .1767

ŶIG .5310 .3243 .2450 .1730
σ2 = 2

n = 10 n = 30 n = 50 n = 100

ŶNI .2651 .1498 .1131 .0825

ŶU .3624 .3030 .2297 .1674

ŶIG .5026 .3021 .2262 .1652
* NI: Noninformative prior, U: Uniform prior

IG : Inverse gamma prior

4. Conclusion

In this paper, we have primarily studied the Bayes estimator of the parameter of the
Rayleigh distribution under three different prior. The performance of each prior distribution
with the Rayliegh distribution has a little different among those estimators. In real life time
data, we recommend using the inverse gamma prior to estimate the Bayes estimator of
future observation. The inverse gamma prior distribution showed the more stable Bayesian
estimator and most plausible region from the simulation results. In almost all case expect
noninformative prior distribution case, the predicted Bayese estimators are extremely similar
to each other.
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