• 제목/요약/키워드: Bayesian Classifier

검색결과 150건 처리시간 0.023초

서베일런스에서 베이지안 분류기를 이용한 객체 검출 및 추적 (Object Detection and Tracking using Bayesian Classifier in Surveillance)

  • 강성관;최경호;정경용;이정현
    • 디지털융복합연구
    • /
    • 제10권6호
    • /
    • pp.297-302
    • /
    • 2012
  • 본 논문은 이미지 상황분석을 기반으로 하여 객체 검출 및 추적 방법을 제안한다. 제안하는 방법은 배경이 복잡한 형태이거나 배경이 동적으로 움직일 때에도 일관성 있는 결과를 얻을 수 있다. 입력 영상의 상황분석은 K-means와 RBF의 하이브리드 네트워크를 이용하여 수행되어진다. 제안된 객체 검출은 일정하지 않은 객체 이미지 때문에 생기는 영향을 감소시키기 위해 상황 기반 적응적 베이지안 네트워크를 이용한다. 본 논문에서는 학습 속도를 높이기 위해 2D Haar 웨이블릿 변형을 이용한 특징 벡터 생성기와 베이지안 판별식 방법을 이용하여 학습 시간이 적게 걸리며 학습 데이터의 변화에 일정한 성능을 갖는 방법론을 제안하였다. 제안하는 방법을 개발하여 실환경에 적용한 결과 검출하고자 하는 물체가 예측 영역을 넘나들거나 다른 불확실한 변화에도 안정적으로 반응함을 알 수 있었다. 실험 결과는 기존의 방법들에서 사용되었던 다양한 데이터 집합에 적용하였을 때 우수한 성능을 보여준다.

Apriori알고리즘에 의한 연관 단어 지식 베이스에 기반한 가중치가 부여된 베이지만 자동 문서 분류 (Weighted Bayesian Automatic Document Categorization Based on Association Word Knowledge Base by Apriori Algorithm)

  • 고수정;이정현
    • 한국멀티미디어학회논문지
    • /
    • 제4권2호
    • /
    • pp.171-181
    • /
    • 2001
  • 기존의 베이지만 문서 분류를 위한 단어 군집 방법은 많은 시간과 노력을 요구하며, 단어 간의 의미 관계를 정확하게 반영하지 못하는 문제점이 있다. 본 논문에서는 마이닝 기법으로 구축된 연관 단어 지식 베이스를 기반으로 하는 베이지안 문서 분류 방법을 제안한다. 제안된 베이지안 문서 분류 방법은 문서를 분류하기 전에 훈련 문서를 사용하여 가중치가 부여된 연관 단어 지 식 베이스를 구축한다. 그 다음으로, 베이지안 확률을 이용하는 분류자는 구축된 연관 단어 지식 베이스를 기반으로 문서를 클래스별로 분류한다. 제안된 방법의 성능을 평가하기 위해, 상호 정보 계산에 의한 단어 사전을 이유한 가중치가 부여된 베이지안 문서 분류 방법, 가중치가 부여된 베이지안 분류 방법, 기존의 단순 베이지안 분류 방법과 비교하였다. 그 결과, 연관 단어 지식 베이스에 기반한 가중치가 부여된 베이지안 분류 방법이 상호 정보에 의한 단어 사진을 이용하는 가중치가 부여된 베이지안 분류 방법보다는 0.87%, 가중치가 부여된 베이지안 분류 방법보다는 2.77%, 단순 베이지안 방법보다는 5.97% 높은 성능 차이를 보였다.

  • PDF

용접결함의 형상인식을 위한 특징변수 추출에 관한 연구 (A Study on the Extraction of Feature Variables for the Pattern Recognition of Welding Flaws)

  • 김재열;노병옥;유신;김창현;고명수
    • 한국정밀공학회지
    • /
    • 제19권11호
    • /
    • pp.103-111
    • /
    • 2002
  • In this study, the natural flaws in welding parts are classified using the signal pattern classification method. The storage digital oscilloscope including FFT function and enveloped waveform generator is used and the signal pattern recognition procedure is made up the digital signal processing, feature extraction, feature selection and classifier design. It is composed with and discussed using the distance classifier that is based on euclidean distance the empirical Bayesian classifier. feature extraction is performed using the class-mean scatter criteria. The signal pattern classification method is applied to the signal pattern recognition of natural flaws.

용접결함의 형상인식을 위한 특징추출 (The Feature Extraction of Welding Flaw for Shape Recognition)

  • 김재열;유신;김창현;송경석;양동조;이창선
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 춘계학술대회
    • /
    • pp.304-309
    • /
    • 2003
  • In this study, natural flaws in welding parts are classified using the signal pattern classification method. The storage digital oscilloscope including FFT function and enveloped waveform generator is used and the signal pattern recognition procedure is made up the digital signal processing, feature extraction, feature selection and classifier design. It is composed with and discussed using the distance classifier that is based on euclidean distance the empirical Bayesian classifier. Feature extraction is performed using the class-mean scatter criteria. The signal pattern classification method is applied to the signal pattern recognition of natural flaws.

  • PDF

용접결함의 패턴분류를 위한 특징변수 유효성 검증 (Availability Verification of Feature Variables for Pattern Classification on Weld Flaws)

  • 김창현;김재열;유홍연;홍성훈
    • 한국공작기계학회논문집
    • /
    • 제16권6호
    • /
    • pp.62-70
    • /
    • 2007
  • In this study, the natural flaws in welding parts are classified using the signal pattern classification method. The storage digital oscilloscope including FFT function and enveloped waveform generator is used and the signal pattern recognition procedure is made up the digital signal processing, feature extraction, feature selection and classifier design. It is composed with and discussed using the distance classifier that is based on euclidean distance the empirical Bayesian classifier. Feature extraction is performed using the class-mean scatter criteria. The signal pattern classification method is applied to the signal pattern recognition of natural flaws.

가중치가 부여된 연관 규칙을 이용한 문서 분류 (Document Classification using Weighted Associative Classifier)

  • 김흥남;이기성;조근식
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2003년도 가을 학술발표논문집 Vol.30 No.2 (1)
    • /
    • pp.154-156
    • /
    • 2003
  • 인터넷의 급속한 성장과 더불어 많은 정보와 데이터들을 인터넷을 통하여 얻을 수 있게 되었으며 많은 단체들이 문서들을 웹을 통하여 이용 가능하게 만들고 있다. 이에 따라 다양한 정보와 데이터를 효과적으로 분류하고 검색하는 문서 분류 (Document Classification)에 대한 알고리즘이 다양한 분야에서 널리 연구되어 왔으며 본 논문에서 초점을 두고 있는 전자 도서관 (Digital Library) 분야에서도 활발히 연구되어지고 있다. 하지만 기존의 전자 도서관의 문서 분류 알고리즘들은 문서들의 각 단락의 비중을 고려하지 않은 채 단어들의 발생 빈도에 초점을 두어 많은 잡음 단어 (Noise Term)를 포함하고 그로 인하여 분류 성능이 떨어졌다. 본 논문에서는 문서 단락의 중요도에 따라 다른 .가중치를 부여하여 단어 지지도 (Term Support)가 높은 단어들을 추출하고 그 단어들로 연관 규칙 (Association Rules)을 이용하여 분류 규칙을 생성하는 방법을 제안한다. 제안된 방법의 성능평가를 위해 문서 분류에 널리 쓰이는 나이브 베이지안 분류자 (Na$\square$ve Bayesian Classifier) 및 기존의 단순 연관 규칙 분류자 (Associative Classifier)와 비교 평가하였다. 그 결과, 각 가중치가 부여된 연관 규칙 분류 방법이 나이브 베이지안 분류 방법과 단순 연관 규칙 분류 방법보다 높은 성능을 보였다.

  • PDF

BAYESIAN CLASSIFICATION AND FREQUENT PATTERN MINING FOR APPLYING INTRUSION DETECTION

  • Lee, Heon-Gyu;Noh, Ki-Yong;Ryu, Keun-Ho
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2005년도 Proceedings of ISRS 2005
    • /
    • pp.713-716
    • /
    • 2005
  • In this paper, in order to identify and recognize attack patterns, we propose a Bayesian classification using frequent patterns. In theory, Bayesian classifiers guarantee the minimum error rate compared to all other classifiers. However, in practice this is not always the case owing to inaccuracies in the unrealistic assumption{ class conditional independence) made for its use. Our method addresses the problem of attribute dependence by discovering frequent patterns. It generates frequent patterns using an efficient FP-growth approach. Since the volume of patterns produced can be large, we propose a pruning technique for selection only interesting patterns. Also, this method estimates the probability of a new case using different product approximations, where each product approximation assumes different independence of the attributes. Our experiments show that the proposed classifier achieves higher accuracy and is more efficient than other classifiers.

  • PDF

자질선정에 따른 Naive Bayesian 분류기의 성능 비교 (Performance Evaluation of a Naive Bayesian Classifier using various Feature Selection Methods)

  • 국민상;정영미
    • 한국정보관리학회:학술대회논문집
    • /
    • 한국정보관리학회 2000년도 제7회 학술대회 논문집
    • /
    • pp.33-36
    • /
    • 2000
  • 베이즈 확률을 이용한 분류기는 자동분류 초기부터 사용되어 아직까지 이 분야에서 가장 많이 사용되는 분류기 중 하나이다. 본 논문에서는 KTSET 문서에서 임의로 추출한 198건의 정보과학회 관련 논문의 제목 및 초록을 대상으로 베이즈 확률을 이용한 문서의 자동분류 실험을 수행하였으며, 더불어 Naive Bayesian 분류기에 가장 적합한 자질선정 방법을 찾고자 카이제곱 통계량, 상호정보량 및 기대상호정보량, 정보획득량, 역문헌빈도, 역카테고리빈도 등 6가지의 자질선정 기준을 실험하였다. 실험 결과는 카이제곱 통계량을 이용한 분류 실험의 성능이 가장 좋았고, 기대상호정보량과 정보획득량, 역카테고리빈도 또한 자질수에 큰 영향을 받지 않고 비교적 안정적인 성능을 보였다.

  • PDF

Data mining approach to predicting user's past location

  • Lee, Eun Min;Lee, Kun Chang
    • 한국컴퓨터정보학회논문지
    • /
    • 제22권11호
    • /
    • pp.97-104
    • /
    • 2017
  • Location prediction has been successfully utilized to provide high quality of location-based services to customers in many applications. In its usual form, the conventional type of location prediction is to predict future locations based on user's past movement history. However, as location prediction needs are expanded into much complicated cases, it becomes necessary quite frequently to make inference on the locations that target user visited in the past. Typical cases include the identification of locations that infectious disease carriers may have visited before, and crime suspects may have dropped by on a certain day at a specific time-band. Therefore, primary goal of this study is to predict locations that users visited in the past. Information used for this purpose include user's demographic information and movement histories. Data mining classifiers such as Bayesian network, neural network, support vector machine, decision tree were adopted to analyze 6868 contextual dataset and compare classifiers' performance. Results show that general Bayesian network is the most robust classifier.

얼굴 회전에 강인한 다인종 얼굴 검출 (Rotation Invariant Multiracial Face Detection)

  • 김광수;김진모;곽수영;변혜란
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제34권10호
    • /
    • pp.945-952
    • /
    • 2007
  • 얼굴 검출은 얼굴 인식을 위한 첫번째 단계로써, 입력 영상에서의 얼굴의 존재 유무와 얼굴의 위치 및 크기를 알아내야 한다. 얼굴의 위치를 찾아내는 것은 크기변화, 조명변화, 회전과 같은 다양한 상황이 발생하기 때문에 쉽지 않다. 본 논문에서는 다양한 문제 중 얼굴이 회전되었을 때 얼굴을 검출하는 방법에 초점을 맞추었다. 먼저, 다인종 얼굴 데이타로부터 얼굴의 존재 유무와 얼굴의 위치 및 크기를 알아낸 뒤, 후보영역에서 두 눈을 검출하다. 두 눈을 이용하여 회전각도를 찾아내고 베이지안 분류기를 이용하여 정면얼굴이 되도록 다시 회전시키는 방법을 이용하였다. 다인종에 데이타를 이용한 회전된 얼굴에 대해서 얼굴검출 알고리즘을 실험하여 결과를 제시하였다.