BAYESIAN CLASSIFICATION AND FREQUENT PATTERN
MINING FOR APPLYING INTRUSION DETECTION

Heon Gyu Lee, Kiyong Noh, Keun Ho Ryu
Database & Bioinformatics Laboratory, Chungbuk National University, Korea
Cheongju Chungbuk, 361-763, Korea
{hglee, khryu}@dblab.cbu.ac.kr

ABSTRACT:

In this paper, in order to identify and recognize attack patterns, we propose a Bayesian classification using frequent
patterns. In theory, Bayesian classifiers guarantee the minimum error rate compared to all other classifiers. However, in
practice this is not always the case owing to inaccuracies in the unrealistic assumption(class conditional independence)
made for its use. Our method addresses the problem of attribute dependence by discovering frequent patterns. It
generates frequent patterns using an efficient FP-growth approach. Since the volume of patterns produced can be large,
we propose a pruning technique for selection only interesting patterns. Also, this method estimates the probability of a
new case using different product approximations, where each product approximation assumes different independence
of the attributes. Our experiments show that the proposed classifier achieves higher accuracy and is more efficient than

other classifiers.

KEY WORDS: Intrusion Detection, Data Mining, Classification.

1. INTRODUCTION

Intrusion detection[1] aims for the detection of illegal
activities. It attempts to analyse existing attack patterns
and recognize new intrusion methods, employing
methods from fields such as statistics, data mining and
machine learning. The purpose of this paper is to
investigate the effectiveness and accuracy of
classification method for the intrusion detection. To
achieve this purpose, we apply classification[2] and
frequent pattern mining techniques[3],[4]. We analyse the
existing intrusion detection techniques using data mining.
Based on the results, we suggest a hybrid approach that
attempts to utilize the advantages of both frequent pattern
mining and Bayesian classification for the intrusion
detection. The proposed classifier is Bayesian classifier
based on frequent patterns and can relax independence
assumption of classifiers like NB(Naive Bayesian) and
DT(Decision Tree). For example, the NB[5] makes the
assumption of conditional independence, that is, given
the class label of a sample, the values of the attributes are
conditionally independent of one another. When the
assumption holds true, then the NB is the most accurate
in comparison with all other classifiers. In practice,
however, dependences can exist between variables of the
real data. Our classifier can consider dependences of the
audit data and relax the strong independence assumption
implied by NB and uses the supports of frequent patterns
to approximate probabilities. Frequent pattern is a set of
non-redundant and interest patterns discovered in training
phase. In classification phase, the probability of a new
case can be estimated using different product
approximations, where each product approximation
assumes different independence of the attributes. In this
paper we describe our main contributions as follows.

- FP-growth is extended to perform frequent patterns
mining. We call the method CFP-growth and the
corresponding data structure CFP-tree.

- CP-tree is used to prune redundant patterns.

- The proposed classifier applies the Bayesian to
perform automatic audit data classification using product
approximation.

2. FREQUENT PATTERNS DISCOVERY
2.1 CFP-tree Construction Algorithm

For construction of CFP(Class Frequent Pattern)-tree, the

following are modifications to the FP-tree.

- Node class count is added in the CFP-tree, where each

element of the distributions stores a number of

transactions of the current class containing a pattern from

this node to the root. Thus, node count value is sum of

the each node class count.

- Every item class count value is added in the frequent-

item header table of the CFP-tree. Thus, every item count

value is sum of the each item class count.

- Every pattern inserted into the tree is sorted in

ascending order of frequency to make the redundant

pattern pruning possible.

For a pattern to be inserted into the CFP-tree, we require

it to be a frequent pattern satisfying support threshold

Smin. Let D be a database containing |D| task-relevant

transactions and C={C;,...,C,} be a finite set of class.

Definition 2.1 Class support and support of pattern A:
couniA,C;) - P(4,C),
|D|

ZCount(A, C)

Support(A.sup) =~

Class Suppor{ A.sup;) =

= P(4
D] (4)

Definition 2.2 CFP(Class Frequent Pattern)-trec: A
class frequent pattern tree is an expanded prefix tree
structure storing crucial quantitative information about
FPs.

-713-

- The tree has a root labeled as null, a set of item prefix
sub trees as the children of the root, and a frequent item
header table. \

- Each node in the item prefix sub tree contains three
fields: item-id(name), item class count value for each
class C; and node-link.

- The number of entries in frequent item header table is
equal to the number of distinct elements in the CFP-tree
and each entry contains three fields: item-id(name), item
class count value for each class C; and head of node-link.
Let’s examine an example that builds CFP-tree for the
database in Table 2.1 with S;;,=2 and the algorithm 2.1
describes the process of CFP-tree construction

- Scan the database once; collect the count for each item
and eliminate those items whose support is not greater
than Spi.. After step 1, the list of frequent 1-itemsets is
a,:3, by:4, 2, d;:3 and L={c,:2, a,:3, d5:3, by:4}.

- Scan the database from the start again. For each
database, filter out the infrequent items and sort the
remaining ones in the ascending order of frequency;
Insert the pattern into the CFP-tree as a branch. Figure
2.1 shows a process of the CFP-tree construction.

Table 2.1 Transaction database

Attributes Class
TID B C D Label Inserted Patterns
1 a bz C3 d3 Cl1 {Cl a, dg, bz}
2 a b1 C dz C2 {C2 Ci, ap, bz)
3 az b3 C2 d3 Cl {Cl d;}
4 ¢ bz Cy d| C2 {C2 bz}
5 a bz C) d3 C2 {C2 Cy, A, d]_, bz}

Scan D once and collect the set of frequent pattern F and their
supports. Sort F in support ascending order as L, the list of
frequent items.
Create the root R of a new CFP-tree and label it as “null”
Create frequent item header with [F] entries. Set all head of
node-link pointer to null.
for each transaction TED do {

Cr = class of transaction T;

Select only frequent items of T into a record P;

Sort P in the order of L. Call insert_tree(P, Cr, R);

}

insert_tree(P, c, R)
Let P=[p|P-p], where p is the first element of P, P-p is the
remaining list.
if R has a child N such that N.item-id=p then
N.count{c) = N.count(c)+1;
N.count=N.count+N.count(c);
else {
create a new node N;
for all classes c; do {
if ¢;=c then
N.count(c;)=1; N.count=N.count+N.count{c;);
else N.count(c;)=0;
N.item-id=p; N.parent=R;
N.node-link=H(p).head; H(p).head=N; }
}
H(p).count = H(p).count+1;
if P-p£0 then Call insert_tree(P-p, ¢, N);

Algorithm 2.1 CFP-tree construction from database

Node Item hem Ttem
Link ID Count Class Count

€2
(CI:1,C2:2)

{CI:3}
{Cl:1,C2:3}

- te

1
. d’
- b,

aluwlwleafe—

Header table

Item Class Node

Item Item

ID Count Count Link

|

|2
a;
9

(C2:2}
{C1:1,€2:2)
{Ci:1,C2:1}

“a

L)

Header table

Figure 2.2 Conditional CFP-tree for item b,

2.2 FPs Discovery using CFP-tree

The CFP-growth method recussively searches for
shorter FPs and then finds longer patterns by
concatenating a frequent item with a shorter frequent
suffix pattern. We mine CFP-tree bottom-up. Starting
from b,, for each frequent 1-item, we construct its pattern
base. A conditional pattern base for an item contains the
transactions that end with that item. We then treat the
conditional pattern base as a transaction and build a
conditional CFP-tree. The CFP-growth is recursively
performed on such conditional CFP-trees. Item b,’s
conditional pattern base is: {(a;:1(Cl:1), d3:1(Cl:1)),
(c:1(C2:1), apl(C2:1)), (c:l(C2:1), a:l(C2:1),
ds:1(C2:1))}. Figure 2.2 shows a process of the
conditional CFP-tree construction. There are two
branches in the b,’s conditional CFP-tree. The possible
combinations are: {¢,b,:2(C2:2)}, {a;b,:3(C1:1,C2:2)},
{dsb,:2(C1:1,C2:1)}, {c1a1h,:2(C2:2)},

© {a;d;b,:2(C1:1,C2:1)}. Item d3’s conditional pattern base

is: {(a;:1(CL:1)), (ci:1(C2:1), a;:1(C2:1))}. In this
conditional pattern base ¢, occurs only once and thus is
eliminated. The possible combination is only one pattern
{a,d5:2(C1:1, C2:1)}. Item a,’s conditional pattern base
is: {(c1:2(C2:2))}. Similarly, we construct a,’s CFP-tree
and generate the one FP as: {c;a;:2(C2:2)}. Lastly,
combined with the frequent 1-items generated during the
first database scan, we can get the set of all FPs and their
class counts for each class.

2.3 Pruning Redundant Pattern using CP-tree

To remove redundant pattern, we use CP(Compressed
Pattern)-tree. CP-tree stores support of FP and their class
count. CP-tree contains also pattern-ranking criterion

-714-

such as support for patterns. Pattern ranking is needed to

select the best pattern in case of overlapping patterns.
Before the pruning using CP-tree, all patterns are

ranked according to a ranking criteria defined as follows.
Definition 2.3 Pattern-Ranking: Given two patterns, A;

and A;, A;> A; (or A is ranked higher than A)) if one of

the follow conditions is satisfied

(1) Sup(Ai)>Sup(A), or

(2) Sup(Ai)=Sup(A)), A; is generated earlier than A;.

The FPs are inserted into the CP-tree and pruned in
parallel. When inserting a new pattern A into the tree, the
three cases can happen. First, the tree contains a sub
pattern of A ranked higher than A. This pattern is
redundant and is not inserted. Second, the tree contains
one or more supper patterns of A ranked lower than A. In
this case, all the supper patterns are pruned. Third, None
of the above two case happens, and A is inserted the CP-
tree.

create a root of CP-tree;
“for each pattern p<P do {
if there is no p_sub of p, rank(p_sub)>>rank(p) then {
if there is no p_supper of p, rank(p_supper)<rank(p) then
prune all p_sub;
insert p into CP-Tree;
}
}
Algorithm 2.2 Redundant pattern pruning using CFP-tree

3. BAYESIA CLASSIFICATION USING EFPg
3.1 Rule pruning using the cover principle

Once a complete CP-tree has been produced the
generated rules are placed into a list P, ordered according
to the Pattern Ranking Criteria, which is then pruned.
The pruning algorithm using the cover principle is
presented in algorithm 3.1.

P = sort(FPs); // according to the their rank
for each data case d; =D do {
database cover count dcover=0; EFP=p;

}

for (the training dataset D and P # @) do {
for each pattern p; <P do {
find a set Dcover S D of cases covered by p;;
if at least one d < Dcover is classified by p; then {
EFP=EFP U p;
for each case d; < Dcover do {
update dcover; = dcover;+1;
if dcover;= 1 then delete case m; from D;

}

Algorithm 3.1 Database coverage pruning

3.2 BCFP Algorithm for Classification

When a new case A’={a;, a,, ..., a,} arrives to be
classified, BCFP(Bayesin Classifier using Frequent

Pattern) combines the evidence provided by the subsets
of A’ that are presented in EFP(Efficient Frequent
Pattern) to approximate P(A’, C;), where EFP denotes the
final high quality FPs for classification and P(A’, C))
determines the conditional probability P(C||A’).

Definition 3.1 A set B with respect to case A’
B={fEEFP|fCA’}. The B consists of the longest
possible patterns of EFPs that are subsets of A’.

BCFP uses the EFPs of B to derive product
approximations of P(A’, C;) for all classes. The product
approximation of the probability of an n-itemset A’
contains a sequence of at most n subsets of A’ such that
each pattern contains at least one item not covered in
previous patterns. The chain rule is P(a, a,, ..., a,) =
P(a|)P(ayja;)...P(aslay,...,a,.1). To obtain a product
approximation of P(A’, C)), the patterns are combined
using the chain rule of probability while under the
assumption that all necessary attributes are independent.
For example, suppose a test case A’={a;, a;, ..., as}
arrives. From the EFPs, we find B={(a,, as), (a;, a4), (a,,
ay, a3), (a1, a4, as)} corresponding to A.

Different combinations of B lead to different product
approximation, and the product approximations are
different even when the same patterns are used in
different order. The product approximation of P(A’, C;) is
generated by adding one pattern at a time till no more
patterns can be added, that is when either all the items of
the remaining patterns from B are already covered or no
more patterns are available in B. For constructing product
approximation, patterns of B are first sorted according to
pattern ranking criteria of definition 2.3, and then
essential patterns are selected from the beginning to
construct the product approximation. The set of covered
items is denoted as item.,. A pattern p inserted in the
product approximation satisfies the following definition.

Definition 3.2 Given two patterns p, q and the set of
covered items item,,,.

Rule 1: [p-item,,,/>1, Rule 2: length(p)<length(q), Rule
3 'p'itemcovlslq'itemcov|

Rule 1 means p contains new items that have not been
covered. And it guarantees the product solution satisfies
the chain rule. Rule 2 assures shorter patterns be
considered first. This is equivalent to maximizing the
number of patterns used in the product approximation.
Rule 3 gives priority to those patterns among the
remaining alternatives that contain the smallest number
of not covered items. The algorithm 3.2 for Bayesian
classification using EFPs is given below and this
algorithm first finds the evidence B provided by the
subsets of A’ that are present in EFPs. Cov is the subset
of A’ already covered, Num and Den are the sets of
patterns in numerator and denominator, respectively.
Procedure selectNext() extracts from B the next pattern to
be used in the product approximation. The algorithm
stops once all items in A’ have been covered. '

B={f<EFP | fCA’}; Cov=g; Nom=p Den=p
for (i=1;CovC A’;i++) do {
B, = selectNext(Cov, B);

-715-

Num= Num U B;;
Den=Den U (BN Cov); Cov=CovUB;; }
for each class C; do {
P(4',C)=P(C) []P@a.C)/ []PGB.C),)

ae Num beDen

The class C; with maximal P(A’, C));
Procedure selectNext(Cov, B)

S={p=BA|p-Cov|= 1};

return a pattern B;&S

such that for all other patterns B;ES
length(B;) < length(B;); length(B;) = length(B;) and |B;-
Cov|= |B;-Covl;
Algorithm 3.2 Bayesian classification using Frequent Patterns

4. EXPERIMENTS AND RESULTS

We evaluate our experiments in building intrusion
detection model on the dataset from the KDD’99{6]. Our
experiments focus Dos and Probe attacks. To accurate
attack detection, we extract different features that reflect
characteristics of each attack type. Since the extracted
dataset contains continuous variables, those variables
must be made discrete. Therefore, decision tree[7] has
been used because the intervals are selected according to
the information they contribute target variable. To
evaluate the performance of our algorithms, first we
compared CFP-growth with previous ones. The previous
data mining results were using Apriori method{2].

5

@

1000 40
—o— Aprion -
900 3 43 CEP-grow th ® 35 =
5 800 e "
o -
o b S o G- - o ~
H Q
£ 2
S 600 g
3 ey "y =
3 eSO Ry
1] 8
o (5]
)
2
<

P N T]
@

=& dbcover=5 = O - dbcover=6 |
=% = docover=§ = “® - dbcover=10

=3

:1—0 =dbcover=2 = =dbcover=4 [

g
»

0025 005 0075 0.1 015 02

Suaport thraghold 001 002 003 004 0.05

Min. Support

Figure 4.1 Mining set of FPs Figure. 4.2 Accuracy on data

We conclude that between these algorithms, CFP-
growth takes less time to generate the complete set of
frequent patterns. We have two important
thresholds(support and coverage) for the classifier
performance. These thresholds control the number of FP
selected for constructing classifier. Figure 4.2 shows
average classification error according to minimum
support and database coverage respectively. Average
classification error is a fraction of misclassified
connection records, where a record is considered
misclassified if the highest probability class predicted is
different from a correct one.

In Figure 4.3, the experiment shows that in terms of
accuracy BCFP and CMARJ8]. NB has lower accuracy in
two cases. Although BCFP was not more accurate and
efficient than CMAR, we are satisfied with these
experiments because BCFP showed efficient classifier
construction time and was more accurate than NB that
makes the assumption of conditional independence.

60 7= ‘ :
', EBCFP @BCMARONB W

o
o

Avg. Classification Error{%}

D1 D2
Data Set

Figure. 4.3 Comparison of BCFP, CMAR, and NB accuracy

5. CONCLUSION

The purpose of this paper was to develop accurate mining
algorithm to automatically audit data classification. The
proposed algorithm has been implemented by
combination of two data mining techniques, frequent
pattern discovery and Bayesian classification, and which
uses FPs to construct different product approximations.
For achieving the high efficiency of FP-growth, we
introduced a CFP-growth algorithm that extends FP-
growth by using CP-tree for redundant pattern pruning.
Experimental results showed high accuracy and
efficiency achieved by our classifier. This classifier was
compared with both models of NB and CMAR classifier.
It was shown to outperform both NB and CMAR in
accuracy.

ACKNOWLEDGEMENTS

This work was supported by the RRC program of
MOCIE and ITEP.

REFERENCES

[1] W. Lee, S. J. Stolfo and K. W. Mok, “A Data Mining
Framework for Building Intrusion Detection Models”, In
Proc. of the IEEE Symposium Security and Privacy,120-132.

{2] Chris Sinclair, Lyn Pierce and Sara Matzner, “An
Application of Machine Learning to Network Intrusion
Detection”, 15" Annual Computer Security Applications
Conference December. Phoenix, Arizona (1999)

[3] R. Agrawal and R. Srikant, “Fast algorithms for mining
association rules”, In Proc. of the 20th VLDB Conference,
Santiago, Chile (1994) 487-499

[4] J. Han, J. Pei and Y. Yin, “Mining frequent patterns without
candidate generation”, In SIGMOD'00, May (2000)

[5] R. Duda and P. Hart “Pattern classification and scene
analysis,” John Wiley and Sons, New York, (1973)

{61 KDD Cup 1999 Data Set, used for The Third International
Knowledge Discovery and Data Mining Tools Competition,
one of several possible homepage URIs:
http://kdd.ics.uci.edw/databases/kddcup99/kddcup99.html.

[7]1 U. M. Fayyad and K. B. Irani, “Multi-Interval discretization
of continuous-valued attributes for classification learning”,
In Proc. of the 13" International Joint Conference on
Artificial Intelligence (1993) 1022-1027

(8] W. Li, J. Han and J. Pei, “CMAR: Accurate and Efficient
Classification Based on Multiple Association Rules”, In Proc.
of 2001 International Conference on Data Mining (2001)

-716-

