Abstract
The face detection is a necessary first-step in the face recognition systems, with the purpose of localizing and extracting face regions from input images. But it is not a simple problem, because faces have many variations such as scale, rotation and lighting condition. In this paper, we propose a novel method to detect not only frontal faces but also partial rotated faces in still images. Firstly, we produce the eye candidates in the sub-regions of an input image to detect rotated faces. Secondly, the eye candidates are used to measure the angles of rotated faces. Thirdly, we are able to derotate the rotated face then put it to Bayesian classifier. We make an experiment with rotated multiracial face and show the good results in this paper.
얼굴 검출은 얼굴 인식을 위한 첫번째 단계로써, 입력 영상에서의 얼굴의 존재 유무와 얼굴의 위치 및 크기를 알아내야 한다. 얼굴의 위치를 찾아내는 것은 크기변화, 조명변화, 회전과 같은 다양한 상황이 발생하기 때문에 쉽지 않다. 본 논문에서는 다양한 문제 중 얼굴이 회전되었을 때 얼굴을 검출하는 방법에 초점을 맞추었다. 먼저, 다인종 얼굴 데이타로부터 얼굴의 존재 유무와 얼굴의 위치 및 크기를 알아낸 뒤, 후보영역에서 두 눈을 검출하다. 두 눈을 이용하여 회전각도를 찾아내고 베이지안 분류기를 이용하여 정면얼굴이 되도록 다시 회전시키는 방법을 이용하였다. 다인종에 데이타를 이용한 회전된 얼굴에 대해서 얼굴검출 알고리즘을 실험하여 결과를 제시하였다.