• Title/Summary/Keyword: Bayesian Approach

Search Result 629, Processing Time 0.024 seconds

A study on Application of Probabilistic Fatigue Life Prediction for Aircraft Structures using the PoF based on Bayesian Approach (베이지안 기반의 파손확률을 이용한 항공기 구조물 확률론적 피로수명 예측 응용에 관한 연구)

  • Kim, Keun Won;Shin, Dae Han;Choi, Joo-Ho;Shin, Ki-Su
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.16 no.5
    • /
    • pp.631-638
    • /
    • 2013
  • The probabilistic fatigue life analysis is one of the common methods to account the uncertainty of parameters on the structural failure. Frequently, the Bayesian approach has been demonstrated as a proper method to show the uncertainty of parameters. In this work, the application of probabilistic fatigue life prediction method for the aircraft structure was studied. This effort was conducted by using the PoF(Probability of Failure) based on Bayesian approach. Furthermore, numerical example was carried out to confirm the validation of the suggested approach. In conclusion, it was shown that the Bayesian approach can calculate the probabilistic fatigue lives and the quantitative value of PoF effectively for the aircraft structural component. Moreover the calculated probabilistic fatigue lives can be utilized to determine the optimized inspection period of aircraft structures.

Investigation of modal identification and modal identifiability of a cable-stayed bridge with Bayesian framework

  • Kuok, Sin-Chi;Yuen, Ka-Veng
    • Smart Structures and Systems
    • /
    • v.17 no.3
    • /
    • pp.445-470
    • /
    • 2016
  • In this study, the Bayesian probabilistic framework is investigated for modal identification and modal identifiability based on the field measurements provided in the structural health monitoring benchmark problem of an instrumented cable-stayed bridge named Ting Kau Bridge (TKB). The comprehensive structural health monitoring system on the cable-stayed TKB has been operated for more than ten years and it is recognized as one of the best test-beds with readily available field measurements. The benchmark problem of the cable-stayed bridge is established to stimulate investigations on modal identifiability and the present paper addresses this benchmark problem from the Bayesian prospective. In contrast to deterministic approaches, an appealing feature of the Bayesian approach is that not only the optimal values of the modal parameters can be obtained but also the associated estimation uncertainty can be quantified in the form of probability distribution. The uncertainty quantification provides necessary information to evaluate the reliability of parametric identification results as well as modal identifiability. Herein, the Bayesian spectral density approach is conducted for output-only modal identification and the Bayesian model class selection approach is used to evaluate the significance of different modes in modal identification. Detailed analysis on the modal identification and modal identifiability based on the measurements of the bridge will be presented. Moreover, the advantages and potentials of Bayesian probabilistic framework on structural health monitoring will be discussed.

통계적 추론에 있어서 베이지안과 고전적 방법(신뢰성 분석과 관련하여)

  • 박태룡
    • Journal for History of Mathematics
    • /
    • v.11 no.1
    • /
    • pp.68-77
    • /
    • 1998
  • There are two approach methods widely in statistical inferences. First is sampling theory methods and the other is Bayesian methods. In this paper, we will introduce the most basic differences of the two approach methods. Especially, we investigate and introduce the historical origin of Bayesian methods in Statistical inferences which is currently used. Also, we introduce the some characteristics of sampling theory method and Bayesian methods.

  • PDF

Development and Comparisons of Bayesian Acceptance Sampling Plans for the Exponential Lifetime Distribution (지수 수명분포에 대한 Bayesian 합격판정 샘플링계획의 개발 및 비교에 관한 연구)

  • Jeong, Hyun-Seok;Jin, Hwi-Chul;Yum, Bong-Jin
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.20 no.1
    • /
    • pp.15-25
    • /
    • 1994
  • The Bayesian approach to reliability acceptance sampling has several advantages over the non-Bayesian approach. For instance, the former usually requires less amount of testing time and smaller sample sizes than the latter. In this article, a Bayesian acceptance sampling plan(ASP) based on a failure-free period life test is developed under the assumption of exponential lifetime distribution, and is compared with the corresponding Bayesian hybrid ASP in terms of the expected completion time. It is found that the proposed ASP tends to have a smaller expected completion time than the Bayesian hybrid ASP as the prior assessment of the reliability of a lot becomes optimistic, and vice versa. Tables of failure-free period Bayesian ASP's are also included.

  • PDF

A Bayesian Regression Model to Estimate the Deterioration Rate of Track Irregularities (궤도틀림 진전율 추정을 위한 베이지안 회귀분석 모형 연구)

  • Park, Bum Hwan
    • Journal of the Korean Society for Railway
    • /
    • v.19 no.4
    • /
    • pp.547-554
    • /
    • 2016
  • This study considered how to estimate the deterioration rate of the track quality index, which represents track geometric irregularity. Most existing studies have used a simple linear regression and regarded the slope of the regression equation as the progress rate. In this paper, we present a Bayesian approach to estimate the track irregularity progress. This Bayesian approach has many advantages, among which the biggest is that it can formally include the prior distribution of parameters which can be derived from historic data or from expert experiences; then, the rate can be expressed as a probability distribution. We investigated the possibility of applying the Bayesian method to the estimation of the deterioration rate by comparing our bayesian approach to the conventional linear regression approach.

Bayesian Method for Sequential Preventive Maintenance Policy

  • Kim Hee Soo;Kwon Young Sub;Park Dong Ho
    • Proceedings of the Korean Reliability Society Conference
    • /
    • 2005.06a
    • /
    • pp.131-137
    • /
    • 2005
  • In this paper, we propose a Bayesian approach to determine the adaptive preventive maintenance(PM) policy for a general sequential imperfect PM model proposed by Lin, Zuo and Yam(2000) that PM not only reduces the effective age of the system but also changes the hazard rate function. Assuming that the failure times follow Weibull distribution, we adopt a Bayesian approach to update unknown parameters and determine the Bayesian optimal sequential PM policies. Finally, numerical examples of the optimal adaptive PM policy are presented for illustrative purposes.

  • PDF

Shear strength prediction for SFRC and UHPC beams using a Bayesian approach

  • Cho, Hae-Chang;Park, Min-Kook;Hwang, Jin-Ha;Kang, Won-Hee;Kim, Kang Su
    • Structural Engineering and Mechanics
    • /
    • v.74 no.4
    • /
    • pp.503-514
    • /
    • 2020
  • This study proposes prediction models for the shear strength of steel fiber reinforced concrete (SFRC) and ultra-high-performance fiber reinforced concrete (UHPC) beams using a Bayesian parameter estimation approach and a collected experimental database. Previous researchers had already proposed shear strength prediction models for SFRC and UHPC beams, but their performances were limited in terms of their prediction accuracies and the applicability to UHPC beams. Therefore, this study adopted a statistical approach based on a collected database to develop prediction models. In the database, 89 and 37 experimental data for SFRC and UHPC beams without stirrups were collected, respectively, and the proposed equations were developed using the Bayesian parameter estimation approach. The proposed models have a simplified form with important parameters, and in comparison to the existing prediction models, provide unbiased high prediction accuracy.

A Bayesian Approach to Optimal Replacement Policy for a Repairable System with Warranty Period

  • Jung, Gi-Mun;Han, Sung-Sil
    • Communications for Statistical Applications and Methods
    • /
    • v.9 no.1
    • /
    • pp.21-31
    • /
    • 2002
  • This paper considers a Bayesian approach to determine an optimal replacement policy for a repairable system with warranty period. The mathematical formula of the expected cost rate per unit time is obtained for two cases : RFRW(renewing free-replacement warranty) and RPRW(renewing pro-rata warranty). When the failure time is Weibull distribution with uncertain parameters, a Bayesian approach is established to formally express and update the uncertain parameters for determining an optimal replacement policy. Some numerical examples are presented for illustrative purpose.

Structural health monitoring of Canton Tower using Bayesian framework

  • Kuok, Sin-Chi;Yuen, Ka-Veng
    • Smart Structures and Systems
    • /
    • v.10 no.4_5
    • /
    • pp.375-391
    • /
    • 2012
  • This paper reports the structural health monitoring benchmark study results for the Canton Tower using Bayesian methods. In this study, output-only modal identification and finite element model updating are considered using a given set of structural acceleration measurements and the corresponding ambient conditions of 24 hours. In the first stage, the Bayesian spectral density approach is used for output-only modal identification with the acceleration time histories as the excitation to the tower is unknown. The modal parameters and the associated uncertainty can be estimated through Bayesian inference. Uncertainty quantification is important for determination of statistically significant change of the modal parameters and for weighting assignment in the subsequent stage of model updating. In the second stage, a Bayesian model updating approach is utilized to update the finite element model of the tower. The uncertain stiffness parameters can be obtained by minimizing an objective function that is a weighted sum of the square of the differences (residuals) between the identified modal parameters and the corresponding values of the model. The weightings distinguish the contribution of different residuals with different uncertain levels. They are obtained using the Bayesian spectral density approach in the first stage. Again, uncertainty of the stiffness parameters can be quantified with Bayesian inference. Finally, this Bayesian framework is applied to the 24-hour field measurements to investigate the variation of the modal and stiffness parameters under changing ambient conditions. Results show that the Bayesian framework successfully achieves the goal of the first task of this benchmark study.

A development of rating-curve using Bayesian Multi-Segmented model (Bayesian 기반 Multi-Segmented 곡선식을 활용한 수위-유량 곡선의 불확실성 분석)

  • Kim, Jin-Young;Kim, Jin-Guk;Lee, Jae Chul;Kwon, Hyun-Han
    • Journal of Korea Water Resources Association
    • /
    • v.49 no.3
    • /
    • pp.253-262
    • /
    • 2016
  • A Rating curve is a regression equation of discharge versus stage for a given point on a stream where the stream discharge is measured across the stream channel with a stage and discharge measurement. The curve is generally used to calculate discharge based on the stage. However, the existing approach showed problems in terms of estimating uncertainty associated with regression parameters including the separation parameter for low and high flow. In this regard, this study aimed to develop a new method for the aforementioned problems based on Bayesian approach, which can better estimate the parameter and its uncertainty. In addition, this study used a Bayesian Multi-Segmented (Bayesian M-S) model which is provided a comparison between the existing and proposed scheme. The proposed model showed better results for the parameter estimation than the existing approach, and provided better performance in terms of estimating uncertainty range.