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Abstract

In this paper, we propose a Bayesian approach to determine the adaptive preventive maintenance(PM) policy for a

general sequential imperfect PM model proposed by Lin, Zuo and Yam(2000) that PM not only reduces the effective age

of the system but also changes the hazard rate function. Assuming that the failure times follow Weibull distribution, we

adopt a Bayesian approach to update unknown parameters and determine the Bayesian optimal sequential PM policies.

Finally, numerical examples of the optimal adaptive PM policy are presented for illustrative purposes.

1. Introduction

The preventive maintenance(PM) is an action taken on a
repairable system while it is still operating, which needs to
be carried out in order to keep the system at the desired level
of successful operation. The PM action may include
minimal repair, perfect repair or replacement of the system
as well as its components and even the inspection of the
system may be considered as part of the PM works.

Many authors have proposed several PM models and
obtained the optimal PM policies by optimizing several
criteria regarding the operating cost. Nakagawa(1986)
considers several periodic and sequential PM policies for the

system with minimal repair at each failure. For these models,

the PM action is conducted at periodic times kx for
periodic PM and at sequential times
X, X+ Xy, 0, X o+ Xy , Where  x;,x,,...,xy are not
necessarily equal. When a failure occurs between the PM’s, a
minimal repair is done and the system remains in the same
state as it was before failure. Canfield(1986) considers a
periodic PM policy for which the PM slows the degradation
process of the system, while the hazard rate keeps monotone
increase although the hazard rate is reduced to that of a
reduced virtual age. Park, Jung and Yum(2000) derive the
optimal periodic PM schedules by incorporating various cost
structures into Canfield’s model. Lin, Zuo and Yam(2000)
propose a general sequential imperfect PM model that PM
not only reduces the effective age of the system but also

changes the hazard rate function. The models are hybrid in
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the sense that they are combination of the age reduction PM
model and the hazard rate adjustment PM model.

In this paper, we consider the Bayesian approach to
update the unknown parameters and to derive the necessary
mathematical formulas for determining the optimal adaptive
sequential PM policy for a general sequential PM model
proposed by Lin, Zuo and Yam(2000).

The Bayesian approach could be quite effective when the
failure distribution of the system is either unknown or
contains uncertain parameters, which is common in most
practical applications. Mazzuchi and Soyer(1996) adopt a
Bayesian approach to solve the optimal replacement problem
for both the block replacement protocols with minimal repair
and the age replacement protocols by minimizing the
expected long-run average cost when the underlying
distribution is Weibull. Their models have been extended by
Juang and Anderson(2004), in which the minimal repair cost
is assumed to be random in addition to the random
parameters of Weibull model discussed in Mazzuchi and
Soyer(1996).

The remainder of this paper is organized as follows. In
section 2, Lin, Zuo and Yam’s(2000) general sequential
preventive maintenance model is presented. In Section 3, a
Bayesian approach is adopted for the Weibull model by
assigning appropriate prior distributions on both shape and
scale parameters and the method to derive the optimal
adaptive sequential PM schedules is discussed. Section 4
presents numerical examples for Bayesian approach to

illustrate the proposed procedures.

2. General sequential imperfect preventive

maintenance model

Lin, Zuo and Yam(2000) propose a general sequential
imperfect preventive maintenance model incorporating
adjustment/ improvement factors in hazard rate and effective

age. The models are hybrid in the sense that they are

combinations of the age reduction PM model and the hazard
rate adjustment PM model. The PM not only reduces the
effective age to a certain value but also changes the slope of
the hazard rate, while the hazard rate increase with the
number of PMs.

PM is performed in a sequence of

intervals.

Notations.
T time to failure
h(t) hazard rate without PM
Hm (1)
X, interval length between the (k - 1) st and the £ th PM

hazard rate between the & th and the (k+1)stPM

z = ZLI x,, thekth PM time

Vi effective age of the system just before the & th PM
a, adjustment factor in hazard rate after the & th PM,

l=a,<a,<--<ay,

k-1
4 =[], @ k=12-N

b, improvement factor in effective age after the
kthPM, 0=b, <b <-<by, <l

N number of PM’s conducted before replacement

Com cost of PM

C, cost of replacement

C,. cost of minimal repair

Lin, Zuo and Yam(2000) consider the following
assumptions.

1) The planning horizon is finite.

2) The hazard rate function of the system when there is
no repair or PM, h(?), is continuous and strictly increasing
function.

3) The time for PM, minimal repair and replacement are
negligible.

4) PM is performed at z,,z,,---,zy_;, and the system is
replaced at z, asnew system.

5) The hazard rate function becomes a, h(bz,) right
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after the & th PM when it was h(z,) just before the PM.
After the PM, the hazard rate function is expressed as
azh(bz, +x) for x>0 . Here we have
l=ap<ay < Zay,y 4 0=by<b <<by, <l

Lin, Zuo and Yam(2000) consider the situation where a
system preventively maintained at z;,z,,-:-,zy_ and is
replaced at z, . Minimal repair is performed at failure
between PMs. The system has the hazard rate
Ah(t) between the (k-1) th and k& th PMs. When
a, =1, k=12,---,N -1, the hybrid model reduces to the age
reduction model. When b, =0, k=12,---,N -1, the hybrid
model reduces to the hazard rate adjustment.

The effective age of the system becomes b, y,
right after the (k-1) th PM and then becomes
Ve =X +b_x  +- b by, --bybyx immediately
before the & th PM. Obviously we have
Ve=Xptb ey o xp =y —b v

Following Ref. [5], the mean cost rate is

C(ylsyZP-‘ryNs N)

N
Cmr ZAIK [H(yk)_ H(bk-lyk-l )] + (N_ 1) Cpm + Cre

S

N-1
{Z(l—bk)yk +y~}

k=t

Using the proposed hybrid model, Lin, Zuo and
Yam(2000) develop optimal PM policies to minimize the

mean cost rate when the parameters of hazard rate are given.

3. Bayesian method for general sequential

imperfect preventive maintenance model

In practical applications the failure distribution of a
system is usually either unknown or contains uncertain
parameters. In this case, it is necessary to select an
appropriate estimation method to accurately calculate the
parameters of a given distribution and the mean cost rate.

In this section, we discuss a Bayesian approach for a

general sequential PM model proposed by Lin, Zuo and
Yam(2000). We consider that the failure times follow a

Weibull distribution with the following hazard rate function.

h) =a pt”, 20, a>0,8>1, @

where a« and S are the scale and shape parameters,
respectively. For this model, the hazard rate function can
be expressed as

apth!

B ()= : &
g A@Blt=D (1=b)y,|  for z<t<z,
i=l

Jor 0<t<z

&)

for k=01..,N-1, RO, () =h(z) and xo=y,=z,=0.

Substituting the expression (3) into the formula (1), we

obtain the following formula for the mean cost.rate.

C(ylayZ:'--,yN’ N)

N
C,y zAk {‘ZYk'B _a(bk-lyk—l)ﬂ }+ (N-1)C,, +C,
k=1

N-1
|:Z(1 ~b )y + YN:|

k=1

@

To determine the optimal sequential PM schedules for
the Weibull model, we apply the adaptive estimation
schemes to update uncertainty about @ and g based on
the empirical data observed during the current life cycle and
thus, reevaluate the optimal schedules for the next life cycle.
As in Juang and Anderson(2004), we use a gamma
distribution and a discrete beta distribution as prior
distributions for scale parameter « and shape parameter 8,
respectively. Such priors are also suggested by Mazzuchi
and Soyer(1996). Since the discrete beta distribution
allows for great flexibility in representing prior uncertainty,
it has been used as a prior for 8 in several Bayesian PM

models. The prior distributions for a and g are given

by

-133 -



f(a):I_L({;)—a”"e"b” s a20,b>0 (5

and
Pr(B=5)= ], s eB)dp =P, ©6)
where B=8,+6(21-1)/2 and 6=(8,-B,)/m for
I=12,...,m. Here, 37 A =1 and g(B) is a beta density

to be defined as

I'(c+d) (ﬂ_ﬂL)H (ﬂu_ﬂ)d'l
() {d) By -B)!
0<pB,<p<p,,c,d>0.

g(B) =

’ M

Initially, ¢ and g are prior independent and thus the
joint prior distribution of @ and g is the product of two

marginals given in (5) and (6). That is,

P@.f)= f@) Pr(B=p) = ——a“ e xB.
T ()

To obtain the optimal sequential PM schedules based on
the prior distributions of @ and g, we need to formulate

the mean cost rate by taking the expectation on (4) with

respect to @ and B. Given the priors (5) and (6), the

mean cost rate can be expressed as

CB (yhyZa-nnya N)= Ea,ﬂ C()’l;)’::---,J’N’ N)

N
Co Y Ak -abysY J+ N1 C,, + C,
k=1
a.p N-1

Z(l_bk))’k N

k=t

=E

I=1

zm:{c,,,, %i A -Gy |+ (V-1 C, + C,e}j
k=1

N1
Z(l =b)yi +yu
k=1

®
If we differentiate the mean cost rate given in (8) with

respect to each y,,k=12,...,N and set them equal to 0,

then we have

a~t B
Cor 3 2 AVBYY B = Cy Gy N)
= ®

and

N b N Bi_
Zﬁl{"’khﬂ]—l - Aub (by,) I}PI = ZﬂIAN (-b)yy 'R
= =

(k=12,..,N-1).
(10)
Theorem 1. For a fixed y,(0<y, <x), the solution of
equation (10) with respect to y, (y, > 0) exists and is unique
if 1-a,b,>0,k=1,2,..,N-land B, >1, I=12,...,m.
Proof. The left hand side of equation (10) is 0 when
y.=0. If l-ab >0 and B, >1, the derivative of

equation (10) with respective to y, is
Y Ba-Bmali-a0” )R
I=1

2 Zﬂz (-84, (l —ab, )PI >0.
I

i.e. the left hand side of equation (10) is a strictly
increasing function of v, - Therefore, the solution of
equation (10) with respective to y, isunique. O

Lin, Zuo and Yam(2000) mentioned that the condition ,
l1-ab, >0, is a reasonable one in their paper. The
condition 1-a,b, >0 means that the hazard rate adjustment
factor a, should be smaller than the improvement factor
by.

Substituting each solution of equation (10), y,
(k=1,2---,N-1), into equation (9), we obtain

m N-1
%Z{ANﬂlyNﬂ’_l {Z A-b)y, + YN}
1=t

k=1
N

N-1)C C
-ZAk{vk"—<bk-1y.-l)ﬂ'}]a=(——)cﬂi—”. an
k=1

mr

where each y,(k=12,--,N~1)is some function of y, .
Then, the left hand side of equation (11) is a function only of
Yu-

Theorem 2. If 1-4,b, >0, k=12, ,N-1and g, >1,
1=12,...,m, the solution of equation (11) with respective to
yx (yy >0) exists and is unique.

Proof. Since
Zﬂ/)’i—ﬂ’_lf“k (1 -ab” )P/ 2 Zﬂ/)’kﬂl‘l“’k (1-a,5,)R >0,
1=1 1=l

fork =1,2,---,N —1, the solution of equation (10) with respect
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to y, iszero when y, =0.Thus,if y, =0, the left hand
side of equation (11) equals zero and is smaller than the right

hand side of (I11). On the other hand, the derivative of

equation (11) with respective to y, is obtained as follows.

n N-1
%;[ANﬁl B - l)ylvﬂl_2 {;(1 =b )y + ¥y HPI >0.

1.e. the left hand side of equation (11) is a strictly
increasing function of y,(y,20) and equals zero at
yy =0 . Therefore, the solution of equation (11) with
respective to y, (v, > 0) exists and is unique. O
Based on the above results, we obtain y,, k=12,---,N
and x, from x, =y, -y, , k=12, ,N.
As for the case when neither N nor x,x,,...x, Is

known, we may proceed similarly. Park, Jung and
Yum(2000) discuss the similar situations based on
Canfield’s(1986) periodic PM model. Firstly, we assume
that N is fixed and determine the values of Xy 2 Xyyeres Xy
as a function of N alone by applying the method discussed

in the earlier part of this section. Then, the value of N' is

determined as

. min . . .
N = N>l Cp(x; (N),x3 (N)yoousxy (N), N) .

*

Once the wvalue of N is determined, then

X, .%;,...,X,- can be obtained by replacing N by N in
its expressions.

In the next, we discuss the concept of an adaptive
sequential PM strategy which is based on the posterior
distributions of « and g . When the failure data is
recorded at the end of each life cycle, the priors for « and
p are adaptively updated and hence become the prior
distributions for the next life cycle. Let N, denote the

number of failures and let T, =(T,,T,, ---.T,, ) denote the

failure times between the & th PM and the (k+1) st PM for
k=0l,---,N-1 . Then the joint probability density of

(Ty,Ny) is written as

g
f(tkl’th""tlmk) = {Hh:m(tkj)}exp{_ H:m (Zkﬂ)}’
el

where H! ()= Ih;,,, (s)ds . To simplify the notations, we let
K

t={ty.t,,t,,} be the vector of observed failure times
throughout the life cycle of the system. Given ¢ , the
posterior distributions of a and g are derived. Then, it
becomes the prior distributions for the next life cycle of the

system. The likelihood function of @ and g can be

obtained by

Nt
L(a,p|v= Hf(’wtkz»'“a’h,,)
£=0

N-l ng k -
= {HH Amaﬂ[t,y- - Z(l _bi)yi]
i=1

k=0 " j=1

Net ¥ B & B
ceXpi— 2 Ao [ZM - (l_bi)yiJ ‘[Zk _z(l_bi)yi] :
k=0 i =

(12)
Using Bayes’ theorem, the joint posterior distribution of

aand B can be expressed as follows,

f@p|o

N- N
L ]ﬁ,[“ ]gl (8)-exp-a- (g2 (B))A

N-1 Nt

ST o) el

h=1

where

N1 my k . -1
g1<r>=HHAk+l(nj-Z(l—b,-)y.) ;
i=1

k=0 j=1

k 4 k r
) =b+ 3 Ay [zm —Z(l—b,-)y,] —[zk —Z(l—b,oy,-]
- i=1 i=l

Since f(a|f,.1) = f(a,B,,t)/Px(B = B;.1) , the conditional
posterior distribution . is a gamma distribution with

parameters of a" and b»° which has the following density

function.
s
(g:(ﬂ ){“ et M*N‘.'—rlrk—l
fialB.t) = ———*—a[ }~exp[-a~(g:(ﬂ,))] :
l"(a + an)
k=0
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where " =a+Y} I, andb’ =g,(f,) are the updated shape
and scale addition, since

Pr(B = B.|t) = f(a.B|)/ f(@.|B,.t) , the posterior distribution

parameters. In

of A can be written as

a+ ):nk

Pr(B=p.|)=P =P. gn(ﬂz) {g208))

h=1

Note that the posterior distributions of aand g are no
longer independent. The optimal sequential PM schedules
based on the posterior distributions of @and B can be
calculated in a straightforward manner by replacing a,b
and P, in the equation (8) by &",b’and B", respectively,
and by finding N and the optimal PM intervals

. .
X\ sXyyt ety Xy s

4. Numerical example

This section presents numerical examples to illustrate a
Bayesian approach for a general sequential. PM model
proposed by Lin, Zuo and Yam(2000) that the failure times
follow a Weibull distribution and derive the optimal PM
schedules based on both prior distribution and posterior
distribution on two parameters « and B . We take
a, = (6k +1)/(5k +1),

Cp=1,C,p=15, b, = k/(2k +1),

k=0,,2,--. For the Bayesian sequential PM policy we
take @ =2.0, b =30,c=d =20, B,=20, B, =40, m=20.
Thus, 5 equalsto (4.0-2.0)/20=0.1.

Table 4.1 illustrates the adaptive nature of our approach
by considering three life cycles of the system. At the end of
each cycle, the failure data is used to update the parameters
a,b and P and thus to renew the optimal PM schedules
during the next life cycle. Instead of real data, we use the
simulated data based on the hazard function with PM given
in (2) with =1 and B =3 and the computation results

are listed in Table 4 when C,=7. In our approach, we first

derive the optimal PM schedules with no failure data and

m kz";k / a+ an
Z P.B, g(By) gz(ﬁ)

then, based on that schedule, the next failure data are
generated.

Using the failure data, the updated values of parameters
a,b and P, are obtained and we renew the sequential
optimal PM schedules for the next life cycle. Table 1 shows
that the optimal number of PM’s seems stabilized as the

number of cycles increases.

<Table 1> Optimal adaptive Bayesian PM schedules with¢_ -7

Optimal :
CycleFailure Times PM Pgdp;;r?;l\ral Mean Cost
Number
x; =1.30549
x, =0.73815  5.01761
0 4 2
x; =0.59921
x, =0.76896
0.93950
1.95339 x =1.19893
1.99763 x, = 0.68365 529110
1 2.99409 5 x; = 0.55860 )
3.11745 x, =0.48661
3.13349 x5 = 0.64529
3.35542
0.46367
1.05105
111849 x =1.19977
1.46946 !
x; =0.67145 5.63610
2 1.55493 4 2
x; = 0.54093
2.33647 ¥ = 070238
2.66456 T
3.46906
3.53222
1.10643
:::;Z; x =122273
: x, =0.67442
1.36987 2
3 4 x; =0.53729 579342
264637 X =0.70767
2.91597 AT
3.02493
3.11167
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